20.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-1≥1\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,則2x+y的最大值為( 。
A.5B.4C.6D.3

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,設(shè)z=2x+y得y=-2x+z,利用數(shù)形結(jié)合即可的得到結(jié)論.

解答 解:由已知得可行域是由A(1,1)、C(2,2)、B(1,3)構(gòu)成的三角形,

作直線l0:2x+y=0,平移l0到l,當(dāng)l過C(2,2)時(shí),
2x+y取得最大值6.
故選:C.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$cos({\frac{π}{6}-α})=\frac{{\sqrt{3}}}{3}$,則$sin({\frac{π}{3}+α})$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={1,2,3,4},集合B={3,4,5,6},則集合A∩B真子集的個(gè)數(shù)為   ( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,四邊形ABCD為平行四邊形,AC,BD相交于點(diǎn)O,點(diǎn)E為PC的中點(diǎn),OP=OC,PA⊥PD.求證:
(1)直線PA∥平面BDE;
(2)平面BDE⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知拋物線x2=2py(p>0)上的點(diǎn)M(m,1)到焦點(diǎn)F的距離為2,
(1)求拋物線的方程;
(2)如圖,點(diǎn)E是拋物線上異于原點(diǎn)的點(diǎn),拋物線在點(diǎn)E處的切線與x軸相交于點(diǎn)P,直線PF與拋物線相交于A,B兩點(diǎn),求△EAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)$\overrightarrow m=({\sqrt{3}sin\frac{x}{4},1}),\overrightarrow n=({cos\frac{x}{4},{{cos}^2}\frac{x}{4}})$,函數(shù)f(x)=$\overrightarrow m•\overrightarrow n$.
(1)當(dāng)x=π時(shí),求函數(shù)f(x)的值;
(2)已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且滿足bcosC+$\frac{1}{2}$c=a,求△ABC的內(nèi)角B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在平面直角坐標(biāo)系xoy中,雙曲線的中心在原點(diǎn),焦點(diǎn)在y軸上,一條漸近線與直線2x+y-1=0垂直,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在平面四邊形ABCD中,AB⊥AD,AB=1,AC=$\sqrt{7}$,△ABC的面積S△ABC=$\frac{{\sqrt{3}}}{2}$,DC=$\frac{{4\sqrt{7}}}{5}$
(Ⅰ)求BC的長;
(Ⅱ)求∠ACD的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知y=f(x+1)+2是定義域?yàn)镽的奇函數(shù),則f(0)+f(2)=-4.

查看答案和解析>>

同步練習(xí)冊(cè)答案