分析 (Ⅰ)由三角函數(shù)公式化簡可得f(x)=-$\frac{1}{2}$sin(2x-$\frac{π}{6}$),由周期公式可得;
(Ⅱ)由x∈[-$\frac{π}{3}$,$\frac{π}{4}$]結(jié)合不等式的性質(zhì)和三角函數(shù)的知識易得函數(shù)的最值.
解答 解:(Ⅰ)化簡可得f(x)=sin2x-sin2(x-$\frac{π}{6}$)
=$\frac{1}{2}$(1-cos2x)-$\frac{1}{2}$[1-cos(2x-$\frac{π}{3}$)]
=$\frac{1}{2}$(1-cos2x-1+$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x)
=$\frac{1}{2}$(-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x)
=$\frac{1}{2}$sin(2x-$\frac{π}{6}$)
∴f(x)的最小正周期T=$\frac{2π}{2}$=π;
(Ⅱ)∵x∈[-$\frac{π}{3}$,$\frac{π}{4}$],∴2x-$\frac{π}{6}$∈[-$\frac{5π}{6}$,$\frac{π}{3}$],
∴sin(2x-$\frac{π}{6}$)∈[-1,$\frac{\sqrt{3}}{2}$],∴$\frac{1}{2}$sin(2x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{4}$],
∴f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{4}$]內(nèi)的最大值和最小值分別為$\frac{\sqrt{3}}{4}$,-$\frac{1}{2}$
點評 本題考查兩角和與差的三角函數(shù)公式,涉及三角函數(shù)的周期性和最值,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8cm3 | B. | 12cm3 | C. | $\frac{32}{3}c{m^3}$ | D. | $\frac{40}{3}c{m^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com