2.設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,a=btanA,且B為鈍角.
(Ⅰ)證明:B-A=$\frac{π}{2}$;
(Ⅱ)求sinA+sinC的取值范圍.

分析 (Ⅰ)由題意和正弦定理可得sinB=cosA,由角的范圍和誘導(dǎo)公式可得;
(Ⅱ)由題意可得A∈(0,$\frac{π}{4}$),可得0<sinA<$\frac{\sqrt{2}}{2}$,化簡可得sinA+sinC=-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$,由二次函數(shù)區(qū)間的最值可得.

解答 解:(Ⅰ)由a=btanA和正弦定理可得$\frac{sinA}{cosA}$=$\frac{a}$=$\frac{sinA}{sinB}$,
∴sinB=cosA,即sinB=sin($\frac{π}{2}$+A)
又B為鈍角,∴$\frac{π}{2}$+A∈($\frac{π}{2}$,π),
∴B=$\frac{π}{2}$+A,∴B-A=$\frac{π}{2}$;
(Ⅱ)由(Ⅰ)知C=π-(A+B)=π-(A+$\frac{π}{2}$+A)=$\frac{π}{2}$-2A>0,
∴A∈(0,$\frac{π}{4}$),∴sinA+sinC=sinA+sin($\frac{π}{2}$-2A)
=sinA+cos2A=sinA+1-2sin2A
=-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$,
∵A∈(0,$\frac{π}{4}$),∴0<sinA<$\frac{\sqrt{2}}{2}$,
∴由二次函數(shù)可知$\frac{\sqrt{2}}{2}$<-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$≤$\frac{9}{8}$
∴sinA+sinC的取值范圍為($\frac{\sqrt{2}}{2}$,$\frac{9}{8}$]

點(diǎn)評(píng) 本題考查正弦定理和三角函數(shù)公式的應(yīng)用,涉及二次函數(shù)區(qū)間的最值,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖(算法流程圖),輸出的n為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過雙曲線x2-y2=1的一個(gè)焦點(diǎn),則p=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.l1,l2表示空間中的兩條直線,若p:l1,l2是異面直線,q:l1,l2不相交,則( 。
A.p是q的充分條件,但不是q的必要條件
B.p是q的必要條件,但不是q的充分條件
C.p是q的充分必要條件
D.p既不是q的充分條件,也不是q的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時(shí)測(cè)得公路北側(cè)一山頂D在西偏北30°的方向上,行駛600m后到達(dá)B處,測(cè)得此山頂在西偏北75°的方向上,仰角為30°,則此山的高度CD=100$\sqrt{6}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若為a實(shí)數(shù),且$\frac{2+ai}{1+i}$=3+i,則a=( 。
A.-4B.-3C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知曲線y=x+lnx在點(diǎn)(1,1)處的切線與曲線y=ax2+(a+2)x+1相切,則a=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sin2x-sin2(x-$\frac{π}{6}$),x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{4}$]內(nèi)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,左、右焦點(diǎn)分別是F1,F(xiàn)2,以F1為圓心以3為半徑的圓與以F2為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4^{2}}$=1,P為橢圓C上任意一點(diǎn),過點(diǎn)P的直線y=kx+m交橢圓E于A,B兩點(diǎn),射線PO交橢圓E于點(diǎn)Q.
(i)求|$\frac{OQ}{OP}$|的值;
(ii)求△ABQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案