分析 (Ⅰ)由題意和正弦定理可得sinB=cosA,由角的范圍和誘導(dǎo)公式可得;
(Ⅱ)由題意可得A∈(0,$\frac{π}{4}$),可得0<sinA<$\frac{\sqrt{2}}{2}$,化簡可得sinA+sinC=-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$,由二次函數(shù)區(qū)間的最值可得.
解答 解:(Ⅰ)由a=btanA和正弦定理可得$\frac{sinA}{cosA}$=$\frac{a}$=$\frac{sinA}{sinB}$,
∴sinB=cosA,即sinB=sin($\frac{π}{2}$+A)
又B為鈍角,∴$\frac{π}{2}$+A∈($\frac{π}{2}$,π),
∴B=$\frac{π}{2}$+A,∴B-A=$\frac{π}{2}$;
(Ⅱ)由(Ⅰ)知C=π-(A+B)=π-(A+$\frac{π}{2}$+A)=$\frac{π}{2}$-2A>0,
∴A∈(0,$\frac{π}{4}$),∴sinA+sinC=sinA+sin($\frac{π}{2}$-2A)
=sinA+cos2A=sinA+1-2sin2A
=-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$,
∵A∈(0,$\frac{π}{4}$),∴0<sinA<$\frac{\sqrt{2}}{2}$,
∴由二次函數(shù)可知$\frac{\sqrt{2}}{2}$<-2(sinA-$\frac{1}{4}$)2+$\frac{9}{8}$≤$\frac{9}{8}$
∴sinA+sinC的取值范圍為($\frac{\sqrt{2}}{2}$,$\frac{9}{8}$]
點(diǎn)評(píng) 本題考查正弦定理和三角函數(shù)公式的應(yīng)用,涉及二次函數(shù)區(qū)間的最值,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p是q的充分條件,但不是q的必要條件 | |
B. | p是q的必要條件,但不是q的充分條件 | |
C. | p是q的充分必要條件 | |
D. | p既不是q的充分條件,也不是q的必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com