1.求函數(shù)f(x)=xlnax(其中a>0)在區(qū)間(0,1]上的最小值.

分析 先求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值.

解答 解:f′(x)=x′lnax+x•$\frac{a}{ax}$=lnax,
令f′(x)>0,解得:x>$\frac{1}{a}$,
令f′(x)<0,解得:0<x<$\frac{1}{a}$,
∴函數(shù)f(x)在(0,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,+∞)遞增,
∴f(x)最小值=f(x)極小值=f($\frac{1}{a}$)=$\frac{1}{a}$ln(a•$\frac{1}{a}$)=0.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知Sn是數(shù)列{an}的前n項(xiàng)和,且a1=1,nan+1=2Sn(n∈N*).
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某縣為增強(qiáng)市民的環(huán)境保護(hù)意識,面向全縣征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率.
(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(3)在(2)的條件下,該縣決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=lnx,g(x)=$\frac{1}{2}{x}^{2}-1$,若方程f(1+x2)-g(x)=k有三個(gè)根,求滿足條件的實(shí)數(shù)k的取值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=2x,等差數(shù)列{an}的公差為2.若f(a2+a4+a6+a8+a10)=4,則log2[f(a1)•f(a2)…f(an)]=-6(n∈N*),則n=( 。
A.10B.8C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求證:
(1)|a+b|+|a-b|≥2|a|;
(2)|a+b|-|a-b|≤2|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的首項(xiàng)a1=2,點(diǎn)($\frac{1}{2}$an,an+1+1)在函數(shù)f(x)=2x+3的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿bn=$\frac{1}{{a}_{n}^{2}-1}$,Tn為數(shù)列{bn}的前n項(xiàng)和,且T1,Tm,T6m成等比數(shù)列,求正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求sin(2x+$\frac{π}{3}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知變量x與y正相關(guān),且由觀測數(shù)據(jù)算得樣本平均數(shù)$\overline{x}$=3,$\overline{y}$=3.5,則由觀測的數(shù)據(jù)得線性回歸方程可能為(  )
A.$\stackrel{∧}{y}$=-2x+9.5B.$\stackrel{∧}{y}$=-0.3x+4.2C.$\stackrel{∧}{y}$=0.4x+2.3D.$\stackrel{∧}{y}$=2x-2.4

查看答案和解析>>

同步練習(xí)冊答案