16.某縣為增強市民的環(huán)境保護意識,面向全縣征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率.
(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場的宣傳活動,應(yīng)從第3,4,5組各抽取多少名志愿者?
(3)在(2)的條件下,該縣決定在這6名志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.

分析 (1)直接利用頻率分布直方圖,求出各組的頻率,然后求出頻數(shù).
(2)利用頻率×樣本=頻數(shù),求出各組人數(shù).
(3)設(shè)出3組的人數(shù)符號,然后列出所有基本事件,求出基本事件的數(shù)目,滿足題意的數(shù)目,求出所求概率即可.

解答 解:(1)由題設(shè)可知,第3組的頻率為0.06×5=0.3,
第4組的頻率為0.04×5=0.2,
第5組的頻率為0.02×5=0.1.    (2分)
(2)第3組的人數(shù)為0.3×100=30,
第4組的人數(shù)為0.2×100=20,
第5組的人數(shù)為0.1×100=10.
因為第3,4,5組共有60名志愿者,
所以利用分層抽樣的方法在60名志愿者中抽取6名志愿者,
每組抽取的人數(shù)分別為:第3組:$\frac{30}{60}$×6=3; 第4組:$\frac{20}{60}$×6=2; 第5組:$\frac{10}{60}$×6=1.
所以應(yīng)從第3,4,5組中分別抽取3人,2人,1人.    (6分)
(3)記第3組的3名志愿者為A1,A2,A3,第4組的2名志愿者為B1,B2,第5組的1名志愿者為C1
則從6名志愿者中抽取2名志愿者有:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),
(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),
(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),共有15種.
其中第4組的2名志愿者B1,B2至少有一名志愿者被抽中的有:
(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),
(A3,B2),(B1,B2),(B1,C1),(B2,C1),共有9種,
所以第4組至少有一名志愿者被抽中的概率P=$\frac{9}{15}$=$\frac{3}{5}$    (12分)

點評 本題考查列舉法計算基本事件數(shù)及事件發(fā)生的概率,頻率分布直方圖,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow{a}$=(cos$\frac{π}{3}$x,sin$\frac{π}{3}$x),$\overrightarrow$=A(cos2φ,-sin2φ),f(x)=$\overrightarrow{a}$•$\overrightarrow$(A>0,|φ|$<\frac{π}{2}$)的部分圖象如圖所示,P、Q分別是該圖象的最高點和最低點,點P的坐標(biāo)為(1,A),點R的坐標(biāo)為(1,0),△PRQ的面積為$\frac{3\sqrt{3}}{2}$.
(Ⅰ)求A及φ的值;
(Ⅱ)將f(x)的圖象向左平移2個單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)復(fù)數(shù)z=a+i(i是虛數(shù)單位,a∈R,a>0),且|z|=$\sqrt{10}$.
(Ⅰ)求復(fù)數(shù)z;
(Ⅱ)在復(fù)平面內(nèi),若復(fù)數(shù)$\overline{z}$+$\frac{m+i}{1-i}$(m∈R)對應(yīng)的點在第四象限,求實數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an},其前n項的和為Sn(n∈N*),點(n,Sn)在拋物線y=2x2+3x上;各項都為正數(shù)的等比數(shù)列{bn}滿足b1b3=$\frac{1}{16}$,b5=$\frac{1}{32}$.
(1)求數(shù)列{an},{bn}的通項數(shù)列;
(2)記cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.兩個數(shù)2和8的等差中項是( 。
A.5B.-5C.10D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在約束條件$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤1}\end{array}\right.$下,目標(biāo)函數(shù)z=x+$\frac{1}{2}$y的最大值為$\frac{5}{6}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)F1和F2是雙曲線$\left\{\begin{array}{l}x=2secθ\\ y=tanθ\end{array}\right.(θ為$為參數(shù))的兩個焦點,點P在雙曲線上,且滿足∠F1PF2=90°,那么△F1PF2的面積是( 。
A.1B.$\frac{{\sqrt{5}}}{2}$C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求函數(shù)f(x)=xlnax(其中a>0)在區(qū)間(0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,已知曲線C1的方程為x2+y2=1,以平面直角坐標(biāo)系xOy的原點O為極點,x軸的正半軸為極軸,且取相同的單位長度建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為ρ(2cosθ-sinθ)=6.
(1)將曲線C1上的所有點的橫坐標(biāo)伸長為原來的$\sqrt{3}$倍,縱坐標(biāo)伸長為原來的2倍后得到曲線C2,試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程;
(2)設(shè)P為曲線C2上任意一點,求點P到直線l的最大距離.

查看答案和解析>>

同步練習(xí)冊答案