【題目】退休年齡延遲是平均預(yù)期壽命延長和人口老齡化背景下的一種趨勢.某機構(gòu)為了解某城市市民的年齡構(gòu)成,按的比例從年齡在20~80歲(含20歲和80歲)之間的市民中隨機抽取600人進行調(diào)查,并將年齡按進行分組,繪制成頻率分布直方圖,如圖所示.規(guī)定年齡在歲的人為“青年人”,歲的人為“中年人”, 歲的人為“老年人”.

(Ⅰ)根據(jù)頻率分布直方圖估計該城市60歲以上(含60歲)的人數(shù),若每一組中的數(shù)據(jù)用該組區(qū)間的中點值來代表,試估算所調(diào)查的600人的平均年齡;

(Ⅱ)將上述人口分布的頻率視為該城市年齡在20~80歲的人口分布的概率,從該城市年齡在20~80歲的市民中隨機抽取3人,記抽到“老年人”的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.

【答案】(1) 48(2)見解析

【解析】

試題

(1)由頻率分布直方圖計算出60歲以上(含60歲)的頻率,從而計算出所抽取的600人中老年人的人數(shù),再除以1%可得總的老年人數(shù),用每個區(qū)間的中間值乘以相應(yīng)的頻率再求和可得估計值;

(2)由頻率分布直方圖知,“老年人”所占的頻率為,所以從該城市年齡在20~80歲的市民中隨機抽取1人,抽到“老年人”的概率為,又X的所有可能取值為0,1,2,3,由二項分布概率公式可計算出各個概率,得分布列,再由期望公式可計算出期望.

試題解析:

(1)由頻率分布直方圖可知60歲以上(含60歲)的頻率為(0.01+0.01)×10=0.2,故樣本中60歲以上(含60歲)的人數(shù)為600×0.2=120,故該城市60歲以上(含60歲)的人數(shù)為120÷1%=12 000.所調(diào)查的600人的平均年齡為

25×0.1+35×0.2+45×0.3+55×0.2+65×0.1+75×0.1=48(歲).

(2)由頻率分布直方圖知,“老年人”所占的頻率為

所以從該城市年齡在20~80歲的市民中隨機抽取1人,抽到“老年人”的概率為

分析可知X的所有可能取值為0,1,2,3,

P(X=0)=,

P(X=1)=,

P(X=2)=,

P(X=3)=

所以X的分布列為

X

0

1

2

3

P

EX=0×+1×+2×+3×

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)軸,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程及曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,拋物線的方程為,以點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為軸交于點

(1)求直線的直角坐標(biāo)方程,點的極坐標(biāo);

(2)設(shè) 交于兩點,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的正視圖與側(cè)視圖如圖所示,則它的俯視圖不可能是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名籃球隊員輪流投籃直至某人投中為止,設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,而且不受其他次投籃結(jié)果的影響.設(shè)投籃的輪數(shù)為,若甲先投,則等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,ABAD,ADBC,APABAD=1.

(Ⅰ)若直線PBCD所成角的大小為,BC的長;

(Ⅱ)求二面角BPDA的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點O是四邊形內(nèi)一點,判斷結(jié)論:,則該四邊形必是矩形,且O為四邊形的中心是否正確,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,且對任意的,都有,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,是正方形,平面, ,分別是的中點.

(1)求證:平面平面

(2)證明平面平面,并求出到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案