【題目】用二分法研究函數(shù)f(x)=x3+3x﹣1的零點(diǎn)時(shí),第一次經(jīng)計(jì)算f(0)<0,f(0.5)>0,可得其中一個(gè)零點(diǎn)x0∈ ,第二次應(yīng)計(jì)算的f(x)的值為f( ).
【答案】(0,0.5);0.25
【解析】解:∵f(0)f(0.5)<0,
∴其中一個(gè)零點(diǎn)x0∈(0,0.5);
第二次應(yīng)計(jì)算的f(x)的值為f()=f(0.25);
所以答案是:(0,0.5),0.25.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的零點(diǎn)與方程根的關(guān)系,掌握二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn)即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 矩形所在的平面, 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: .
(3)當(dāng)滿足什么條件時(shí),能使平面成立?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來隨著我國在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實(shí)力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來.如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場,在海外共設(shè)多個(gè)分支機(jī)構(gòu),需要國內(nèi)公司外派大量后、后中青年員工.該企業(yè)為了解這兩個(gè)年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從后和后的員工中隨機(jī)調(diào)查了位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計(jì) | |
后 | |||
后 | |||
合計(jì) |
(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有以上的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(Ⅱ)該公司舉行參觀駐海外分支機(jī)構(gòu)的交流體驗(yàn)活動(dòng),擬安排名參與調(diào)查的后、后員工參加.后員工中有愿意被外派的人和不愿意被外派的人報(bào)名參加,從中隨機(jī)選出人,記選到愿意被外派的人數(shù)為;后員工中有愿意被外派的人和不愿意被外派的人報(bào)名參加,從中隨機(jī)選出人,記選到愿意被外派的人數(shù)為,求的概率.
參考數(shù)據(jù):
(參考公式:,其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=(x>0),則給出以下四個(gè)結(jié)論:
①函數(shù)f(x)的值域?yàn)閇0,1];
②函數(shù)f(x)的圖象是一條曲線;
③函數(shù)f(x)是(0,+∞)上的減函數(shù);
④函數(shù)g(x)=f(x)﹣a有且僅有3個(gè)零點(diǎn)時(shí) .
其中正確的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到曲線
(1)求出的普通方程;
(2)設(shè)直線: 與的交點(diǎn)為, ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng),時(shí),證明:(其中為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中,正確的是( )
A. 垂直于同一個(gè)平面的兩個(gè)平面互相平行 B. 垂直于同一個(gè)平面的兩條直線互相平行
C. 平行于同一個(gè)平面的兩條直線互相平行 D. 平行于同一條直線的兩個(gè)平面互相平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用min{a,b,c}表示a,b,c三個(gè)數(shù)中的最小值,設(shè)f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上的最大值為,求實(shí)數(shù)的值;
(2)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)在(1)的條件下,設(shè),對任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn)、,使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com