5.若正實(shí)數(shù)x,y滿足2x+y=2,則$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$的最小值是$\frac{4}{5}$.

分析 根據(jù)題意,由分式的運(yùn)算性質(zhì)分析可得$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$=$\frac{9}{y+1}$+$\frac{16}{2(x+1)}$-9,又由2x+y=2,則有2(x+1)+(y+1)=5,進(jìn)而分析可得$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$=($\frac{9}{y+1}$+$\frac{16}{2(x+1)}$)$\frac{(2x+2)+(y+1)}{5}$-9=$\frac{1}{5}$(16+9+$\frac{18(x+1)}{y+1}$+$\frac{8(y+1)}{x+1}$)-9,由基本不等式的性質(zhì)計(jì)算可得答案.

解答 解:根據(jù)題意,若2x+y=2,
則$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$=$\frac{(2-y)^{2}}{y+1}$+$\frac{(2-2x)^{2}}{2(x+1)}$=$\frac{[(y+1)-3]^{2}}{y+1}$+2$\frac{[(x+1)-2]^{2}}{x+1}$=(y+1)+$\frac{9}{y+1}$+2(x+1)+$\frac{16}{2(x+1)}$-14=$\frac{9}{y+1}$+$\frac{16}{2(x+1)}$-9;
又由2x+y=2,則有2(x+1)+(y+1)=5,
則$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$=($\frac{9}{y+1}$+$\frac{16}{2(x+1)}$)$\frac{(2x+2)+(y+1)}{5}$-9=$\frac{1}{5}$(16+9+$\frac{18(x+1)}{y+1}$+$\frac{8(y+1)}{x+1}$)-9≥$\frac{1}{5}$(25+2$\sqrt{\frac{18(x+1)}{y+1}×\frac{8(y+1)}{x+1}}$)-9≥$\frac{4}{5}$;
當(dāng)且僅當(dāng)y+1=2(x+1)=$\frac{5}{2}$時(shí),等號(hào)成立;
即$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$的最小值是$\frac{4}{5}$;
故答案為:$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查基本不等式的性質(zhì)及應(yīng)用,關(guān)鍵是根據(jù)分式的運(yùn)算性質(zhì),配湊基本不等式的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知下列各式:①f(|x|+1)=x2+1; ②$f(\frac{1}{{{x^2}+1}})=x$;③f(x2-2x)=|x|; ④f(|x|)=3x+3-x.其中存在函數(shù)f(x)對(duì)任意的x∈R都成立的是( 。
A.①④B.③④C.①②D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…$\frac{1}{n×(n+1)}$,…,Sn為數(shù)列的前n項(xiàng)和
(1)計(jì)算S1,S2,S3,S4并猜想計(jì)算Sn的公式
(2)用數(shù)學(xué)歸納法證明(1)的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.一組數(shù)據(jù)如表:
x12345
y1.31.92.52.73.6
(1)畫(huà)出散點(diǎn)圖;
(2)根據(jù)下面提供的參考公式,求出回歸直線方程,并估計(jì)當(dāng)x=8時(shí),y的值.
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=ax3-2x2+1,若f(x)存在唯一的零點(diǎn)x0,且x0<0,則實(shí)數(shù)a的取值范圍為( 。
A.(2,+∞)B.(0,$\frac{\sqrt{6}}{9}$)C.(-∞,-$\frac{4\sqrt{6}}{9}$)D.($\frac{4\sqrt{6}}{9}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.定義在(0,+∞)上的函數(shù)y=f(x)的反函數(shù)為y=f-1(x),若g(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x≤0}\\{f(x),x>0}\end{array}\right.$為奇函數(shù),則f-1(x)=2的解為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知一個(gè)遞增的等差數(shù)列{an}的前三項(xiàng)的和為-3,前三項(xiàng)的積為8.?dāng)?shù)列$\{\frac{b_n}{a_n}\}$的前n項(xiàng)和為${S_n}={2^{n+1}}-2$.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求數(shù)列$\{\frac{b_n}{a_n}\}$的通項(xiàng)公式.
(3)是否存在一個(gè)等差數(shù)列{cn},使得等式${b_n}={c_{n+1}}•{2^{n+1}}-{c_n}•{2^n}$對(duì)所有的正整數(shù)n都成立.若存在,求出所有滿足條件的等差數(shù)列{cn}的通項(xiàng)公式,并求數(shù)列{bn}的前n項(xiàng)和Tn;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)$f(x)=aln(x-a)-\frac{1}{2}{x^2}+x$(a<0).
(Ⅰ)當(dāng)a=-3時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)某物體一天中的溫度T是時(shí)間t的函數(shù),已知T(t)=t3+at2+bt+c,其中溫度的單位是℃,時(shí)間的單位是小時(shí),規(guī)定中午12:00相應(yīng)的t=0,中午12:00以后相應(yīng)的t取正數(shù),中午12:00以前相應(yīng)的t取負(fù)數(shù)(例如早上8:00對(duì)應(yīng)的t=-4,下午16:00相應(yīng)的t=4),若測(cè)得該物體在中午12:00的溫度為60℃,在下午13:00的溫度為58℃,且已知該物體的溫度在早上8:00與下午16:00有相同的變化率.
(1)求該物體的溫度T關(guān)于時(shí)間t的函數(shù)關(guān)系式;
(2)該物體在上午10:00至下午14:00這段時(shí)間中(包括端點(diǎn))何時(shí)溫度最高?最高溫度是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案