【題目】某種商品原來每件售價為25元,年銷售量8萬件.

(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?

(2)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價到元.公司擬投入萬元作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入萬元作為浮動宣傳費(fèi)用.試問:當(dāng)該商品明年的銷售量a至少應(yīng)達(dá)到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

【答案】1)每件定價最多為元;(2)當(dāng)該商品明年的銷售量至少達(dá)到萬件時,才可能使明年的銷售收入不低于原收入與總收入之和,此時該商品的每件定價為元.

【解析】

(1)設(shè)出每件的定價,根據(jù)“銷售的總收入不低于原收入”列不等式,解不等式求得定價的取值范圍,由此求得定價的最大值.(2)利用題目所求“改革后的銷售收入不低于原收入與總投入之和”列出不等式,將不等式分離常數(shù),然后利用基本不等式求得的取值范圍以及此時商品的每件定價.

解:(1)設(shè)每件定價為元,

依題意得,

整理得,

解得

所以要使銷售的總收入不低于原收入,每件定價最多為40元.

(2)依題意知當(dāng)時,不等式有解

等價于時,有解,

由于,

當(dāng)且僅當(dāng),即時等號成立,

所以

當(dāng)該商品改革后銷售量至少達(dá)到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)若曲線上的點到直線的最大距離為6,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,對角線,交于點

(Ⅰ)若,求證:平面;

(Ⅱ)若平面平面,求證:;

(Ⅲ)在棱上是否存在點(異于點),使得平面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,四邊形為矩形,的中點,的中點.

(1)求證:;

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《史記》卷六十五《孫子吳起列傳第五》中有這樣一道題:齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機(jī)選一匹馬進(jìn)行一場比賽,齊王獲勝的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個班級進(jìn)行教改實驗.為了解教學(xué)效果,期末考試后,陳老師分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出莖葉圖如圖.記成績不低于90分者為“成績優(yōu)秀”.

(1)在乙班樣本的20個個體中,從不低于86分的成績中隨機(jī)抽取2個,求抽出的2個均成績優(yōu)秀的概率;

(2)由以上統(tǒng)計數(shù)據(jù)作出列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.1的前提下認(rèn)為:“成績優(yōu)秀”與教學(xué)方式有關(guān).

0.400

0.250

0.150

0.100

0.050

0.025

0.708

1.323

2.072

2.706

3.841

5.024

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機(jī)構(gòu)對高三學(xué)生的記憶力和判斷力進(jìn)行統(tǒng)計分析,得下表數(shù)據(jù):

(1)請根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明的線性相關(guān)程度;(結(jié)果保留小數(shù)點后兩位,參考數(shù)據(jù):

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

參考公式:,;相關(guān)系數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x﹣alnx+
(Ⅰ)若a>1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>3,函數(shù)g(x)=a2x2+3,若存在x1 , x2∈[ ,2],使得|f(x1)﹣g(x2)|<9成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案