9.已知$\overrightarrow{a}$=(1,-2,1),$\overrightarrow{a}$+$\overrightarrow$=(-1,2,-1),則$\overrightarrow$等于(  )
A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)

分析 根據(jù)空間向量的線性運(yùn)算,求出向量$\overrightarrow$的坐標(biāo)即可.

解答 解:∵$\overrightarrow{a}$=(1,-2,1),$\overrightarrow{a}$+$\overrightarrow$=(-1,2,-1),
∴$\overrightarrow$=$\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{a}$=(-1-1,2-(-2),-1-1)=(-2,4,-2).
故答案為:B.

點(diǎn)評(píng) 本題考查了空間向量的線性運(yùn)算與坐標(biāo)表示的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)A(2,2)及圓C:x2+y2+4x-8y+4=0.
(Ⅰ)若直線l過點(diǎn)A且被圓C截得的線段長(zhǎng)為4$\sqrt{3}$,求直線l的方程;
(Ⅱ)由圓C外一點(diǎn)P(a,b)向圓C引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|,求線段PQ長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x2-2x,則下列各點(diǎn)中不在函數(shù)圖象上的是(  )
A.(1,-1)B.(-1,3)C.(2,0)D.(-2,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=2x+$\frac{m}{{2}^{x}}$(m為常數(shù))為偶函數(shù).
(1)求實(shí)數(shù)m的值;
(2)判斷f(x)在[0,+∞)上的單調(diào)性,并用單調(diào)性的定義證明;
(3)求不等式f(logax)>$\frac{5}{2}$(a>0且a≠1)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某場(chǎng)排球賽決賽將在甲隊(duì)與乙隊(duì)之間展開,據(jù)以往統(tǒng)計(jì),甲隊(duì)在每局比賽中勝乙隊(duì)的概率為$\frac{2}{3}$,比賽采取五局三勝制,即誰先勝三局誰就獲勝,并停止比賽,則甲隊(duì)以3:1獲勝的概率為( 。
A.$\frac{2}{3}$B.$\frac{8}{27}$C.$\frac{2}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列各組向量中不平行的是( 。
A.$\overrightarrow{a}$=(1,2,-2),$\overrightarrow$=(-2,-4,4)B.$\overrightarrow{c}$=(1,0,0),$\overrightarroww3cp9d1$=(-3,0,0)
C.$\overrightarrow{e}$=(2,3,0),$\overrightarrow{f}$=(0,0,0)D.$\overrightarrow{g}$=(-2,3,5)$\overrightarrow{h}$=(16,-24,40)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x.
(1)若x是某三角形的一個(gè)內(nèi)角,且f(x)=-$\frac{\sqrt{2}}{2}$,求角x的大。
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的最小值及取得最小值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若在定義域內(nèi)存在實(shí)數(shù)x滿足f(-x)=f(x),則稱函數(shù)f(x)為“局部偶函數(shù)”.
(Ⅰ)判斷函數(shù)f(x)=x-$\frac{1}{x}$是否為“局部偶函數(shù)”,并說明理由;
(Ⅱ)若F(x)=$\left\{\begin{array}{l}{{9}^{x}-k•{3}^{x}+{k}^{2}-16,x>0}\\{k•{3}^{x}-{9}^{x},x<0}\end{array}\right.$為“局部偶函數(shù)”,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.己知A(-1,4),B(3,-2),以AB為直徑的圓交直線y=x+1于M、N兩點(diǎn),則|MN|=5$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案