已知f(x)的定義域為[0,1],求f(x2+1)的值域.
考點:函數(shù)的值域,函數(shù)的定義域及其求法
專題:計算題
分析:求值域要先確定定義域.
解答: 解:∵x2+1≥1
又∵f(x)的定義域為[0,1]
則當且僅當x2+1=1時,
f(x2+1)有意義,此時為f(1)
則f(x2+1)的值域為{f(1)}.
點評:本題考查了值域的求法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sinωxcosφ-cosωxsinφ(ω>0,0<φ<π)的圖象過點(
π
6
,0),且相鄰兩條對稱軸間距離為
π
2

(1)求f(x)的表達式;
(2)試求函數(shù)y=f2
1
2
x)+
1
2
的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,-1),
b
=(x,2),
c
=(-3,y),且
a
b
c
,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2-4x+2y-3=0和圓外一點M(4,-8).
(1)過M作圓的割線交圓于A、B兩點,若|AB|=4,求直線AB的方程;
(2)過M作圓的切線,切點為C、D,求切線長及CD所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求f(x)=x2-2tx+2在[1,2]上的最小值g(t).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2+ax+1≥0對一切x∈(0,
1
2
]成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程為
x=1-2t
y=t
,曲線C的參數(shù)方程為
x=cosθ
y=
3
sinθ
(θ為參數(shù)).
(1)將直線l與曲線C的參數(shù)方程化為一般方程;
(2)若已知P(x,y)是曲線C上的一點,求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={a,b,c},B={-2,0,2},映射f從A到B的映射滿足f(a)=f(b)=f(c),那么映射f的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,且直線PA⊥平面ABCD.過直線BD且垂直于直線PC的平面交PC于點E,當三棱錐E-BCD的體積取到最大值時,側(cè)棱PA的長度為
 

查看答案和解析>>

同步練習冊答案