設i為虛數(shù)單位,復數(shù)z滿足(2-i)•z=5,則z的共軛復數(shù)
.
z
=
 
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:直接利用復數(shù)的乘除運算法則,化簡求出復數(shù)z 即可得到共軛復數(shù).
解答: 解:復數(shù)z滿足(2-i)•z=5,
z=
5
2-i
=
5(2+i)
(2-i)(2+i)
=2+i.
.
z
=2-i.
故答案為:2-i.
點評:倍考查復數(shù)的代數(shù)形式的混合運算,共軛復數(shù)的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x-y+1≥0
x+y-2≤0
x≥0,y≥0
,則z=x+2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M={m|
m-4
2
∈Z
},N={x|
x+3
2
∈N}
,則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={0,1,2,3},B={1,2,4},則集合A∩B=( 。
A、{0,1,2,3,4}
B、{1,2,3,4}
C、{1,2}
D、{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:(
1+sinx
1-sinx
-
1-sinx
1+sinx
)(
1-cosx
1+cosx
-
1+cosx
1-cosx
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=4,若焦點在x軸上的橢圓過點P(0,-1),且其長軸長等于圓O的直徑,過點P作兩條互相垂直的直線l1與l2,l1與⊙O交于A,B兩點,l2交橢圓于另一點C.
(1)設直線l1的斜率為k,求弦AB的長;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:(lg2)2+lg4•lg50+(lg50)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a2x-2ax+1+2(a>0,a≠1)的定義域為[-1,+∞).
(1)若a=2,求f(x)的值域;
(2)求f(x)的最小值;
(3)當0<a<1時,若f(x)≤3對x∈[-1,2]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x1,x2∈R,常數(shù)a>0,定義運算“*”為:x1*x2=4x1x2,等號右邊是通常的乘法運算,如果在平面直角坐標系中,動點P的坐標(x,y)滿足關系式:
y
2
*
y
2
=a*x,則動點P的軌跡方程為(  )
A、y2=
1
2
ax
B、y2=ax
C、y2=2ax
D、y2=4ax

查看答案和解析>>

同步練習冊答案