分析 根據(jù)f(x)存在反函數(shù)f-1(x),得出f(x)是定義域上的單調(diào)函數(shù),求出a的值以及f(x)的解析式,即可求出f(1)+f-1(-4)的值.
解答 解:∵函數(shù)f(x)=(x-a)|x|=$\left\{\begin{array}{l}{{x}^{2}-ax,x≥0}\\{{-x}^{2}+ax,x<0}\end{array}\right.$,
且f(x)存在反函數(shù)f-1(x),
∴f(x)是定義域R的單調(diào)增函數(shù),
∴a=0,
∴f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{{-x}^{2},x<0}\end{array}\right.$,
∴f(1)+f-1(-4)=1+(-2)=-1.
故答案為:-1
點(diǎn)評(píng) 本題考查了反函數(shù)的定義與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 甲乙 | B. | 甲丙 | C. | 丙丁 | D. | 乙丙 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{8}{15}$ | C. | $\frac{4}{5}$ | D. | $\frac{7}{15}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com