18.三條直線l1:x+y-1=0,l2:x-2y+3=0,l3:x-my-5=0圍成一個三角形,則m的取值范圍是(-∞,-1)∪(-1,2)∪(2,3)∪(3,+∞).

分析 由三條直線中的任意兩條平行求得m的值,再由三條直線相交于一點求得m的值,則l1,l2,l3不能圍成一個三角形的m的所有取值組成的集合可求.

解答 解:當(dāng)直線l1:x+y-1=0 平行于 l3:x-my-5=0時,m=-1.
當(dāng)直線l2:x-2y+3=0 平行于 l3:x-my-5=0時,m=2,
當(dāng)三條直線經(jīng)過同一個點時,由$\left\{\begin{array}{l}{x+y-1=0}\\{x-2y+3=0}\end{array}\right.$解得直線l1 與l2的交點(-$\frac{1}{3}$,$\frac{4}{3}$)
代入l3:x-my-5=0,解得m=3;
綜上,m為-1或2或3.三條直線不能構(gòu)成三角形.
故當(dāng)三條直線圍成三角形時,m的取值范圍(-∞,-1)∪(-1,2)∪(2,3)∪(3,+∞),
故答案為:(-∞,-1)∪(-1,2)∪(2,3)∪(3,+∞).

點評 本題考查了兩直線平行的條件,考查了兩直線交點坐標(biāo)的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)$y=\frac{1}{x}$的圖象與函數(shù)y=3sinπx(-1≤x≤1)的圖象所有交點的橫坐標(biāo)與縱坐標(biāo)的和等于( 。
A.4B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知△ABC,AB=4,BC=3,AC=5,現(xiàn)以AB為軸旋轉(zhuǎn)一周,則所得幾何體的表面積( 。
A.24πB.21 πC.33πD.39 π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=alnx-bx2(x>0),若函數(shù)y=f(x)在x=1處與直線y=-1相切.
(1)求實數(shù)a,b的值;
(2)求函數(shù)y=f(x)在$[{\frac{1}{e},e}]$上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某地區(qū)為了綠化環(huán)境進行大面積植樹造林,如圖所示,在區(qū)域{(x,y)|x≥0,y≥0}內(nèi)植樹,第1棵樹在點A1(0,1)處,第2棵樹在點B1(1,1)處,第3棵樹在點C1(1,0)處,第4棵樹在點C2(2,0)處,接著按圖中箭頭方向每隔1個單位種1棵樹.第n棵樹所在點的坐標(biāo)是(46,0),則n=(  )
A.1936B.2016C.2017D.2208

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知單位圓O與x軸正半軸相交于點M,點A,B在單位圓上,其中點A在第一象限,且∠AOB=$\frac{π}{2}$,記∠MOA=α,∠MOB=β.
(Ⅰ)若α=$\frac{π}{6}$,求點A,B的坐標(biāo);
(Ⅱ)若點A的坐標(biāo)為($\frac{4}{5}$,m),求sinα-sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,正方形ABCD所在平面與四邊形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,F(xiàn)A=FE,∠AEF=45°.
(1)求證:EF⊥平面BCE;
(2)設(shè)線段CD、AE的中點分別為P、M,求PM與BC所成角的正弦值;
(3)求二面角F-BD-A的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.直線l:5ax-5y-a+3=0(a∈R) 的圖象必過定點($\frac{1}{5},\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)F1,F(xiàn)2分別是橢圓$E:{x^2}+\frac{y^2}{b^2}=1(0<b<1)$的左、右焦點,已知點F1的直線交橢圓E于A,B兩點,若|AF1|=2|BF1|,AF2⊥x軸,則橢圓E的方程為( 。
A.${x^2}+\frac{{3{y^2}}}{2}=1$B.${x^2}+\frac{{6{y^2}}}{5}=1$C.${x^2}+\frac{{5{y^2}}}{4}=1$D.${x^2}+\frac{{8{y^2}}}{7}=1$

查看答案和解析>>

同步練習(xí)冊答案