已知集合A={x|y=
2-x2
,B={y|y=x2},則A∩B=( 。
A、{(-1,1),(1,1)}
B、(-1,1)
C、[0,
2
]
D、[-
2
,
2
]
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:由集合A={x|-
2
≤x≤
2
},B={y|y=x2}={y|y≥0},能求出集合A∩B.
解答: 解:∵集合A={x|y=
2-x2
}={x|2-x2≥0}={x|-
2
≤x≤
2
},
B={y|y=x2}={y|y≥0},
∴A∩B={x|0≤x≤
2
}=[0,
2
].
故選:C.
點(diǎn)評(píng):本題考查交集的求法,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-1
+(x-2)0的定義域?yàn)椋ā 。?/div>
A、{x|x≠2}
B、[1,2)∪(2,+∞)
C、{x|x>1}
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1=1+2i,z2=1+i,記復(fù)數(shù)z=
z1
z2
,則復(fù)數(shù)z在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
3
)x2-2x
的值域?yàn)椋ā 。?/div>
A、[-3,0]
B、(-∞,3]
C、(0,3]
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某賽季甲、乙兩名籃球運(yùn)動(dòng)員參加的每場(chǎng)比賽得分的莖葉圖,由甲、乙兩人這幾場(chǎng)比賽得分的中位數(shù)之和是( 。
A、65B、64C、63D、62

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若z1=3x+yi與z2=(2-x)+(2+y)i(x,y∈R)互為共軛復(fù)數(shù),則復(fù)平面內(nèi)z2對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x,y的不等式組
x-2y+1>0
x-m>0
y-m>0
表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0),滿足3x0-2y0=1.則m的取值范圍是( 。
A、(-∞,
2
3
B、B(-∞,
1
3
C、(-∞,1)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b滿足
3
a
+
1
b
=5,則3a+4b的最小值是( 。
A、
28
5
B、
24
5
C、6
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+2x-m,函數(shù)g(x)=
f(x)
x
+log2
1-x
1+x
-2.且當(dāng)x∈[1,+∞)時(shí),f(x)≥0恒成立,
(1)當(dāng)m=3時(shí),求不等式f(x)≥0的解集;
(2)求m的最大值;
(3)當(dāng)m取最大值時(shí),判斷g(x)的奇偶性并給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案