【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若對(duì)于任意的,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)在遞增,在遞減,在遞增(2)
【解析】
(1)先求函數(shù)的定義域以及導(dǎo)數(shù),然后根據(jù)導(dǎo)數(shù)的零點(diǎn)與的大小關(guān)系確定分類(lèi)討論的標(biāo)準(zhǔn),再結(jié)合的符號(hào)討論函數(shù)的單調(diào)性.
(2)結(jié)合函數(shù)的單調(diào)性,求出,則問(wèn)題轉(zhuǎn)化為對(duì)于任意恒成立問(wèn)題,再求出,的最大值,即可求出的范圍.
解:(1)的定義域是,
,
①當(dāng)時(shí),令,解得:,或,
令,解得:,
故在遞增,在遞減,在遞增,
②當(dāng)時(shí),,在遞增,
③當(dāng)時(shí),令,解得:,或,
令,解得:;
故在遞增,在遞減,在遞增;
(2)由(1)知時(shí),在遞增,
故在遞增,
故,
要使不等式在恒成立,
只需,
記,則,
故在遞增,的最大值是,
故,
故的范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新個(gè)稅法于2019年1月1日進(jìn)行實(shí)施.為了調(diào)查國(guó)企員工對(duì)新個(gè)稅法的滿意程度,研究人員在地各個(gè)國(guó)企中隨機(jī)抽取了1000名員工進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中.
(1)求的值并估計(jì)被調(diào)查的員工的滿意程度的中位數(shù);(計(jì)算結(jié)果保留兩位小數(shù))
(2)若按照分層抽樣從,中隨機(jī)抽取8人,再?gòu)倪@8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分別是雙曲線的左、右焦點(diǎn),A為左頂點(diǎn),P為雙曲線右支上一點(diǎn),若且的最小內(nèi)角為,則( )
A.雙曲線的離心率B.雙曲線的漸近線方程為
C.D.直線與雙曲線有兩個(gè)公共點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,…,是曲線:上的點(diǎn),,,…,是軸正半軸上的點(diǎn),且,,…,均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).
(1)寫(xiě)出、和之間的等量關(guān)系,以及、和之間的等量關(guān)系;
(2)猜測(cè)并證明數(shù)列的通項(xiàng)公式;
(3)設(shè),集合,,若,求實(shí)常數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為,直線l的方程為:
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于、兩點(diǎn)
①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;
②已知點(diǎn),求證:為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的奇函數(shù)滿足.且當(dāng)時(shí),.若對(duì)于任意,都有,則實(shí)數(shù)的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/oC | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
(Ⅰ)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另3天的數(shù)據(jù),求出關(guān)于的線性回歸方程
(Ⅱ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的兩組檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠.
(參考公式, , ),參考數(shù)據(jù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在x=1及x=2處取得極值.
(1)求a、b的值;
(2)若方程有三個(gè)根,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,為左焦點(diǎn),為上頂點(diǎn),為右頂點(diǎn),若,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.
(1)求的標(biāo)準(zhǔn)方程;
(2)是否存在過(guò)點(diǎn)的直線,與和交點(diǎn)分別是和,使得?如果存在,求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com