9.下列函數(shù)中既是奇函數(shù)又在區(qū)間(-1,1)上單調(diào)遞減的是( 。
A.y=sinxB.y=-|x+1|C.y=ln$\frac{1-x}{1+x}$D.y=$\frac{1}{2}$(ex+e-x

分析 根據(jù)正弦函數(shù)的單調(diào)性,奇函數(shù)在原點(diǎn)有定義時(shí),原點(diǎn)處的函數(shù)值為0,以及奇函數(shù)定義,復(fù)合函數(shù)單調(diào)性的判斷,對(duì)數(shù)函數(shù)的單調(diào)性,反比例函數(shù)的單調(diào)性,以及偶函數(shù)的定義便可判斷每個(gè)選項(xiàng)的正誤,從而找出正確選項(xiàng).

解答 解:A.y=sinx在(-1,1)上單調(diào)遞增,∴該選項(xiàng)錯(cuò)誤;
B.x=0時(shí),y=-1,即該函數(shù)不過原點(diǎn),∴不是奇函數(shù),∴該選項(xiàng)錯(cuò)誤;
C.解$\frac{1-x}{1+x}>0$得,-1<x<1;且$ln\frac{1-(-x)}{1+(-x)}=ln\frac{1+x}{1-x}=-ln\frac{1-x}{1+x}$;
∴該函數(shù)為奇函數(shù);
設(shè)$t=\frac{1-x}{1+x}=-1+\frac{2}{1+x}$,則y=lnt為增函數(shù),且$t=-1+\frac{2}{1+x}$在(-1,1)上為減函數(shù);
∴函數(shù)$y=ln\frac{1-x}{1+x}$在(-1,1)上為減函數(shù),∴該選項(xiàng)正確;
D.設(shè)y=f(x),顯然f(-x)=f(x);
∴該函數(shù)是偶函數(shù),∴該選項(xiàng)錯(cuò)誤.
故選C.

點(diǎn)評(píng) 考查正弦函數(shù)的單調(diào)性,奇函數(shù)、偶函數(shù)的定義,奇函數(shù)在原點(diǎn)有定義時(shí),原點(diǎn)處的函數(shù)值為0,以及對(duì)數(shù)函數(shù)、反比例函數(shù)的單調(diào)性,復(fù)合函數(shù)單調(diào)性的判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x|x-a|+a2-7(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=|x+a|(a∈R),若對(duì)任意x1≤1.總存在x2≥2,使g(x1)>f(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的上頂點(diǎn)M與左、右焦點(diǎn)F1、F2構(gòu)成三角形MF1F2面積為$\sqrt{3}$,又橢圓C的離心率為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓C的方程;
(2)橢圓C的下頂點(diǎn)為N,過點(diǎn)T(t,2)(t≠0)的直線TM,TN分別與橢圓C交于E,F(xiàn)兩點(diǎn).若△TMN的面積是△TEF的面積的k倍,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1(a>1),過點(diǎn)B($\frac{4}{5}$,-$\frac{1}{5}$)作斜率為1的直線l交橢圓E于C、D兩點(diǎn),點(diǎn)B恰為線段CD的中點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)Q在橢圓E上,點(diǎn)R(-1,0),若直線QR的斜率大于1,求直線OQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離和它到定直線x=2的距離比是$\frac{\sqrt{2}}{2}$.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)過點(diǎn)Q($\frac{\sqrt{2}}{3}$,0)的直線l與曲線C交于點(diǎn)M,N,求證:點(diǎn)A($\sqrt{2}$,0)在以MN為直經(jīng)的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩頂點(diǎn)為A1,A2,虛軸兩端點(diǎn)為B1,B2,兩焦點(diǎn)為F1,F(xiàn)2.若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,則雙曲線的離心率為(  )
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{3+\sqrt{5}}{2}$C.$\frac{1+\sqrt{2}}{2}$D.$\frac{3+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中:
①若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow$=$\overrightarrow{0}$;
②若|$\overrightarrow{a}$|=|$\overrightarrow$|,($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=0;
③若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$;
④若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$;
其中正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.從某小學(xué)隨機(jī)抽取100名學(xué)生,將他們的身高(單位:厘米)數(shù)據(jù)繪成頻率分布直方圖(如圖).
(Ⅰ)由圖中數(shù)據(jù)求a的值;
(Ⅱ)若要從身高在[120,130),[130,140),[140,150]三組內(nèi)的學(xué)生中,用分層抽樣的方法選取12人參加一項(xiàng)活動(dòng),則從身高在[140,150]內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=$\left\{\begin{array}{l}{x+3,x≤1}\\{-{x}^{2}+2x+3,x>1}\end{array}\right.$,則使得f(x)-ex-m≤0恒成立的m的取值范圍是(  )
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案