【題目】已知橢圓 的右頂點,離心率為,為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知(異于點)為橢圓上一個動點,過作線段的垂線交橢圓于點,求的取值范圍.
【答案】(Ⅰ);(Ⅱ) .
【解析】
(1)由橢圓右頂點求出,由離心率求出,再由求出,從而求出橢圓方程;(2)先考慮AP斜率不存在,再考慮斜率存在時,設(shè)出AP方程,聯(lián)立橢圓方程,解出點P坐標(biāo),然后求出AP長度,同理求出DE長度,從而求出比值,用換元法結(jié)合單調(diào)性求出其范圍.
解:(Ⅰ)因為是橢圓的右頂點,所以.
又,所以.
所以.
所以橢圓的方程為
(Ⅱ)當(dāng)直線的斜率為0時,,為橢圓的短軸,
則,所以.
當(dāng)直線的斜率不為0時,
設(shè)直線的方程為,,
則直線DE的方程為.
由
得.
所以
所以
所以..
同理可求.
所以
設(shè)則,.
令,
則.
所以是一個增函數(shù).
所以.
綜上:的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.對具有線性相關(guān)關(guān)系的變量有一組觀測數(shù)據(jù),其線性回歸方程是,且,則實數(shù)的值是
B.正態(tài)分布在區(qū)間和上取值的概率相等
C.若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1
D.若一組數(shù)據(jù)的平均數(shù)是2,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,直線,則
(1)關(guān)于的對稱點的坐標(biāo)________;
(2)關(guān)于的對稱直線方程________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點為,其準(zhǔn)線與軸的交點為,過點作斜率為的直線交拋物線于兩點,若,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個交點,經(jīng)過這三個交點的圓記為C.求:
(Ⅰ)求實數(shù)b 的取值范圍;
(Ⅱ)求圓C 的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以為直徑的圓上每一點都染上了紅、黃、藍三色之一,已知、染上了紅色,聯(lián)結(jié)圓上的點組成三角形,給出4個結(jié)論:
①必定存在一個直角三角形,三個頂點同為紅色;
②必定存在一個直角三角形,三個頂點同色;
③必定存在一個直角三角形,三個頂點全不同色;
④必定存在一個直角三角形,或都三個頂點同色,或者三個頂點全不同色。
則真命題的個數(shù)是( )個。
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點,且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意的復(fù)數(shù),定義運算為.
(1)設(shè)集合{均為整數(shù)},用列舉法寫出集合;
(2)若,為純虛數(shù),求的最小值;
(3)問:直線上是否存在橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點,使該點對應(yīng)的復(fù)數(shù)經(jīng)運算后,對應(yīng)的點也在直線上?若存在,求出所有的點;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com