已知圓的圓心為原點,且與直線相切。

(1)求圓的方程;
(2)過點(8,6)引圓O的兩條切線,切點為,求直線的方程。

(1)(2)

解析試題分析:(1)依題意得:圓的半徑,
所以圓的方程為
(2)是圓的兩條切線,。在以為直徑的圓上。點的坐標(biāo)為,則線段的中點坐標(biāo)為。
為直徑的圓方程為
化簡得:,為兩圓的公共弦,
直線的方程為。
考點:直線方程及直線與圓相切的位置關(guān)系
點評:直線與圓相切時,圓心到直線的距離等于圓的半徑;兩圓相交時公共弦所在直線方程可用兩圓方程直接相減消去平方項即可得到

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點和圓

(Ⅰ)過點的直線被圓所截得的弦長為,求直線的方程;
(Ⅱ)試探究是否存在這樣的點是圓內(nèi)部的整點(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點稱為整點),且△OEM的面積?若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線L:與圓C:
(1) 若直線L與圓相切,求m的值。
(2) 若,求圓C 截直線L所得的弦長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線與圓交于兩點,記△的面積為(其中為坐標(biāo)原點).
(1)當(dāng),時,求的最大值;
(2)當(dāng),時,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,直線過定點.
(1)求圓心的坐標(biāo)和圓的半徑
(2)若與圓C相切,求的方程;
(3)若與圓C相交于P,Q兩點,求三角形面積的最大值,并求此時的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求直線被圓所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:以點C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點O, A,與y軸交于點O, B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y = –2x+4與圓C交于點M, N,若|OM| = |ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題11分)已知圓,過原點的直線與圓相交于兩點
(1) 若弦的長為,求直線的方程;
(2)求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
設(shè)有半徑為3的圓形村落,、兩人同時從村落中心出發(fā)。一直向北直行;先向東直行,出村后一段時間,改變前進方向,沿著與村落邊界相切的直線朝所在的方向前進。
(1)若在距離中心5的地方改變方向,建立適當(dāng)坐標(biāo)系,
求:改變方向后前進路徑所在直線的方程
(2)設(shè)兩人速度一定,其速度比為,且后來恰與相遇.問兩人在何處相遇?
(以村落中心為參照,說明方位和距離)

查看答案和解析>>

同步練習(xí)冊答案