20.射線OA繞端點O逆時針旋轉(zhuǎn)270°到達(dá)OB位置,由OB位置順時針旋轉(zhuǎn)一周到達(dá)OC位置,求∠AOC的大。

分析 角可以看成是一條射線繞著 從一個位置旋轉(zhuǎn)到另一個位置所成的,射線在旋轉(zhuǎn)時逆時針旋轉(zhuǎn)是正角,順時針旋轉(zhuǎn)是負(fù)角,問題得以解決.

解答 解:逆時針旋轉(zhuǎn)是正角,順時針旋轉(zhuǎn)是負(fù)角,
∴∠AOC=270°-360°=-90°.

點評 本題考查了角的概念,關(guān)鍵是掌握逆時針旋轉(zhuǎn)是正角,順時針旋轉(zhuǎn)是負(fù)角,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.判斷函數(shù)f(x)=2x+$\frac{2}{x}$,x∈[$\frac{1}{2}$,3]的單調(diào)性,并求出它的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}中,an=(n+1)•($\frac{9}{10}$)n是否存在自然數(shù)m,使得對于一切n∈N*,都有an≤am.若存在,求出m,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$為奇函數(shù)
(1)求a,b的值
(2)證明f(x)在(-∞,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=x2+4x+3.
(1)求f(x)在區(qū)間[t,t+1]上的最小值g(t);
(2)畫出g(t)的圖象;
(3)求使得g(t)的值為8時的t值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知偶函數(shù)f(x)在x∈[0,+∞)上是增函數(shù),且f(1)=0,求不等式f(logax)>0(a>0,且a≠1)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.拋物線y=ax2+bx+c與x軸的交點(-1,0),(3,0),其形狀與拋物線y=-2x2相同,則y=ax2+bx+c的解析式為( 。
A.y=-2x2-x+3B.y=-2x2+4x+5C.y=-2x2+4x+8D.y=-2x2+4x+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若f(x)=2015sinx-2016cosx的一個對稱中心為(a,0),則a的值所在區(qū)間可以是( 。
A.(0,$\frac{π}{4}$)B.($\frac{π}{4}$,$\frac{π}{3}$)C.($\frac{π}{3}$,$\frac{π}{2}$)D.($\frac{π}{2}$,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(1)已知函數(shù)f(x)=2x-1,g(x)=x2+1.則f(1)=1,g(1)=2.
(2)已知f(x)=x2+x+1,則f($\sqrt{2}$)=3+$\sqrt{2}$,f($\frac{1}{a}$)=$\frac{{a}^{2}+a+1}{{a}^{2}}$.
(3)已知f(x)=x5+x3+x,則f(1)=3,f(-1)=-3.
(4)已知函數(shù)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,則f($\frac{1}{a}$)=$\frac{1}{1+{a}^{2}}$.

查看答案和解析>>

同步練習(xí)冊答案