分析 根據(jù)函數(shù)奇偶性的性質(zhì),利用對(duì)稱性進(jìn)行求解即可.
解答 解:若x<0,則-x>0,則f(-x)=e-x+1,
∵函數(shù)f(x)是R上的奇函數(shù),
∴f(0)=0,f(-x)=e-x+1=-f(x),
即f(x)=-e-x-1,
故f(x)=$\left\{\begin{array}{l}{{e}^{x}+1,}&{x>0}\\{0,}&{x=0}\\{-{e}^{-x}-1,}&{x<0}\end{array}\right.$,
故答案為:$\left\{\begin{array}{l}{{e}^{x}+1,}&{x>0}\\{0,}&{x=0}\\{-{e}^{-x}-1,}&{x<0}\end{array}\right.$.
點(diǎn)評(píng) 本題主要考查函數(shù)解析式的求解,利用函數(shù)奇偶性的性質(zhì)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a${\;}^{\frac{1}{2}}$b${\;}^{\frac{4}{3}}$ | B. | ${a}^{-\frac{1}{2}}$b${\;}^{-\frac{4}{3}}$ | C. | ${a}^{-\frac{1}{2}}$b${\;}^{\frac{4}{3}}$ | D. | a${\;}^{\frac{1}{2}}$b${\;}^{-\frac{4}{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com