分析 由已知求出tanα=±1,由sinαcosα=$\frac{1}{2}sin2α$,然后利用萬能公式求得答案.
解答 解:由tan2α+cot2α=2,得$ta{n}^{2}α+\frac{1}{ta{n}^{2}α}=2$,即tan4α-2tan2α+1=0,
解得:tan2α=1,即tanα=±1.
∴sinαcosα=$\frac{1}{2}sin2α$=$\frac{1}{2}•\frac{2tanα}{1+ta{n}^{2}α}=\frac{tanα}{1+ta{n}^{2}α}$.
當tanα=1時,sinαcosα=$\frac{1}{2}$;
當tanα=-1時,sinαcosα=$-\frac{1}{2}$.
故答案為:$-\frac{1}{2}$或$\frac{1}{2}$.
點評 本題考查同角三角函數(shù)基本關系式的應用,體現(xiàn)了分類討論的數(shù)學思想方法,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com