15.已知拋物線y2=2px(p>0)的準線與x軸的交點為Q,過點Q的直線與拋物線相切于點P,F(xiàn)是拋物線的焦點,若△PQF的面積為8,則P的值為4.

分析 由題意,Q(-$\frac{p}{2}$,0),F(xiàn)($\frac{p}{2}$,0),設P(a,b),利用△PQF的面積為8,求出P的坐標,求出拋物線在P的切線方程,Q(-$\frac{p}{2}$,0),代入可得0-$\frac{16}{p}$=$\frac{p}{\frac{16}{p}}$(-$\frac{p}{2}$-$\frac{128}{{p}^{3}}$),解方程,可得p的值.

解答 解:由題意,Q(-$\frac{p}{2}$,0),F(xiàn)($\frac{p}{2}$,0),設P(a,b),
∵△PQF的面積為8,
∴$\frac{1}{2}×p×|b|$=8,
∴|b|=$\frac{16}{p}$,∴a=$\frac{128}{{p}^{3}}$,
取P($\frac{128}{{p}^{3}}$,$\frac{16}{p}$),則拋物線在P的切線方程為y-$\frac{16}{p}$=$\frac{p}{\frac{16}{p}}$(x-$\frac{128}{{p}^{3}}$),
Q(-$\frac{p}{2}$,0),代入可得0-$\frac{16}{p}$=$\frac{p}{\frac{16}{p}}$(-$\frac{p}{2}$-$\frac{128}{{p}^{3}}$),
∴p=4.
故答案為:4.

點評 本題考查拋物線的方程與性質(zhì),考查直線與拋物線的位置關系,考查拋物線的切線方程,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,已知直線l與拋物線y2=2x相交于A(x1,y1),B(x2,y2)兩點,與x軸相交于點M,若y1y2=-4,
(1)求:M點的坐標;
(2)求證:OA⊥OB;
(3)求△AOB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.證明:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>$\sqrt{n}$(n>1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,P為拋物線C:y2=8x上一點,F(xiàn)為拋物線的焦點,M為拋物線準線l上一點,且MF⊥PF,線段MF與拋物線交于點N,若|PF|=8,則$\frac{|MN|}{|NF|}$=( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{2}{3}$$\sqrt{3}$D.$\frac{3}{2}$$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知拋物線的頂點在原點,對稱軸為x軸,焦點在直線3x-4y-12=0上,那么拋物線通徑長是16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.過拋物線L:x2=2py(p>0)的焦點F且斜率為$\frac{3}{4}$的直線與拋物線L在第一象限的交點為P,且|PF|=5.
(1)求拋物線L的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=kx+t交拋物線L于不同的兩點M、N,若拋物線上一點C滿足$\overrightarrow{OC}$=λ($\overrightarrow{OM}$+$\overrightarrow{ON}$)(λ>0),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,M是拋物線y2=4x上一點(M在x軸上方),F(xiàn)是拋物線的焦點,若|FM|=4,則∠xFM=( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在直角坐標系xOy中,拋物線C:y2=4x的焦點為F,準線為l,點P是準線上任一點,直線PF交拋物線于A,B兩點,若$\overrightarrow{FP}$=4$\overrightarrow{FA}$,則S△AOB=(  )
A.$\frac{5\sqrt{2}}{6}$B.3$\sqrt{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在等比數(shù)列{an}中,公比q=-2,且a3a7=4a4,則a8等于( 。
A.16B.32C.-16D.-32

查看答案和解析>>

同步練習冊答案