15.已知拋物線y2=2px(p>0)的準(zhǔn)線與x軸的交點(diǎn)為Q,過(guò)點(diǎn)Q的直線與拋物線相切于點(diǎn)P,F(xiàn)是拋物線的焦點(diǎn),若△PQF的面積為8,則P的值為4.

分析 由題意,Q(-$\frac{p}{2}$,0),F(xiàn)($\frac{p}{2}$,0),設(shè)P(a,b),利用△PQF的面積為8,求出P的坐標(biāo),求出拋物線在P的切線方程,Q(-$\frac{p}{2}$,0),代入可得0-$\frac{16}{p}$=$\frac{p}{\frac{16}{p}}$(-$\frac{p}{2}$-$\frac{128}{{p}^{3}}$),解方程,可得p的值.

解答 解:由題意,Q(-$\frac{p}{2}$,0),F(xiàn)($\frac{p}{2}$,0),設(shè)P(a,b),
∵△PQF的面積為8,
∴$\frac{1}{2}×p×|b|$=8,
∴|b|=$\frac{16}{p}$,∴a=$\frac{128}{{p}^{3}}$,
取P($\frac{128}{{p}^{3}}$,$\frac{16}{p}$),則拋物線在P的切線方程為y-$\frac{16}{p}$=$\frac{p}{\frac{16}{p}}$(x-$\frac{128}{{p}^{3}}$),
Q(-$\frac{p}{2}$,0),代入可得0-$\frac{16}{p}$=$\frac{p}{\frac{16}{p}}$(-$\frac{p}{2}$-$\frac{128}{{p}^{3}}$),
∴p=4.
故答案為:4.

點(diǎn)評(píng) 本題考查拋物線的方程與性質(zhì),考查直線與拋物線的位置關(guān)系,考查拋物線的切線方程,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,已知直線l與拋物線y2=2x相交于A(x1,y1),B(x2,y2)兩點(diǎn),與x軸相交于點(diǎn)M,若y1y2=-4,
(1)求:M點(diǎn)的坐標(biāo);
(2)求證:OA⊥OB;
(3)求△AOB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.證明:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>$\sqrt{n}$(n>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,P為拋物線C:y2=8x上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),M為拋物線準(zhǔn)線l上一點(diǎn),且MF⊥PF,線段MF與拋物線交于點(diǎn)N,若|PF|=8,則$\frac{|MN|}{|NF|}$=( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{2}{3}$$\sqrt{3}$D.$\frac{3}{2}$$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為x軸,焦點(diǎn)在直線3x-4y-12=0上,那么拋物線通徑長(zhǎng)是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.過(guò)拋物線L:x2=2py(p>0)的焦點(diǎn)F且斜率為$\frac{3}{4}$的直線與拋物線L在第一象限的交點(diǎn)為P,且|PF|=5.
(1)求拋物線L的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=kx+t交拋物線L于不同的兩點(diǎn)M、N,若拋物線上一點(diǎn)C滿(mǎn)足$\overrightarrow{OC}$=λ($\overrightarrow{OM}$+$\overrightarrow{ON}$)(λ>0),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,M是拋物線y2=4x上一點(diǎn)(M在x軸上方),F(xiàn)是拋物線的焦點(diǎn),若|FM|=4,則∠x(chóng)FM=( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在直角坐標(biāo)系xOy中,拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)P是準(zhǔn)線上任一點(diǎn),直線PF交拋物線于A,B兩點(diǎn),若$\overrightarrow{FP}$=4$\overrightarrow{FA}$,則S△AOB=( 。
A.$\frac{5\sqrt{2}}{6}$B.3$\sqrt{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在等比數(shù)列{an}中,公比q=-2,且a3a7=4a4,則a8等于(  )
A.16B.32C.-16D.-32

查看答案和解析>>

同步練習(xí)冊(cè)答案