分析 直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+s\;,\;}\\{y=1-s}\end{array}}\right.$(s為參數(shù)),消去參數(shù)s可得普通方程.曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=t+2\;,\;}\\{y={t^2}}\end{array}}\right.$(t為參數(shù)),消去參數(shù)化為普通方程.聯(lián)立解得交點坐標,利用兩點之間的距離公式即可得出.
解答 解:直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+s\;,\;}\\{y=1-s}\end{array}}\right.$(s為參數(shù)),消去參數(shù)s可得普通方程:x+y-2=0.
曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=t+2\;,\;}\\{y={t^2}}\end{array}}\right.$(t為參數(shù)),消去參數(shù)化為:y=(x-2)2,
聯(lián)立$\left\{\begin{array}{l}{x+y-2=0}\\{y=(x-2)^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,或$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$..
取A(2,0),B(1,1),
則|AB|=$\sqrt{(2-1)^{2}+(0-1)^{2}}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點評 本題考查了參數(shù)方程化為普通方程、曲線的交點、兩點之間的距離公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com