16.函數(shù)f(x)=x2+2(a-1)x+1在(-∞,-2)上是減函數(shù),則a的取值范圍是(-∞,3].

分析 求出二次函數(shù)的對稱軸方程,由二次函數(shù)的單調(diào)性可得對稱軸在區(qū)間的右邊,可得不等式,解不等式即可得到a的范圍.

解答 解:若f(x)=x2+2(a-1)x+1在(-∞,-2)上是減函數(shù),
則函數(shù)的對稱軸x=-(a-1)=1-a,
可得1-a≥-2
即a≤3,
故答案為:(-∞,3].

點評 本題主要考查函數(shù)單調(diào)性的應(yīng)用,根據(jù)一元二次函數(shù)單調(diào)性的性質(zhì)建立對稱軸和單調(diào)區(qū)間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|=3,則|$\overrightarrow{a}$+2$\overrightarrow$|=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知直三棱柱ABC-A1B1C1的底面是邊長為4的正三角形,B,E,F(xiàn)分別是AA1,CC1的中點,且BE⊥B1F.
(1)求證:B1F⊥EC1;
(2)求二面角C1-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某隧道截面如圖,其下部形狀是矩形ABCD,上部形狀是以CD為直徑的半圓.已知隧道的橫截面面積為4+π,設(shè)半圓的半徑OC=x,隧道橫截面的周長(即矩形三邊長與圓弧長之和)為f(x).
(1)求函數(shù)f(x)的解析式,并求其定義域;
(2)問當x等于多少時,f(x)有最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在正四棱錐P-ABCD中,AB=2,PA=$\sqrt{6}$,E是棱PC的中點,過AE作平面分別與棱PB、PD交于M、N兩點.
(1)若PM=$\frac{2}{3}$PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面向量$\overrightarrow{a}$=(4sin(π-α),$\frac{3}{2}$),$\overrightarrow{a}$=(cos$\frac{π}{3}$,cosα),$\overrightarrow{a}$⊥$\overrightarrow$.
(Ⅰ)求tanα的值;
(Ⅱ)求$\frac{1}{1+sinαcosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)a,b均為實數(shù),則“a>b”是“a3>b3”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={x|x2-16>0},B={x|-2<x≤6},則A∩B等于( 。
A.(-2,4)B.(4,6]C.(-4,6)D.(-4,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某手機廠商推出一次智能手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行打分,打分的頻數(shù)分布表如下:
女性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)2040805010
男性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)4575906030
(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的方差大。ú挥嬎憔唧w值,給出結(jié)論即可);
(2)根據(jù)評分的不同,運用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意取3名用戶,求3名用戶評分小于90分的人數(shù)的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案