已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=5,S5=15,則數(shù)列{
1
anan-1
}的前200項(xiàng)和為( 。
A、
200
201
B、
199
201
C、
199
200
D、
201
200
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項(xiàng)公式可得an=n.于是
1
anan+1
=
1
n(n+1)
=
1
n
-
1
n+1
.利用“裂項(xiàng)求和”即可得出.
解答: 解:設(shè)等差數(shù)列{an}的公差為d,
∵a5=5,S5=15,
a1+4d=5
5a1+
5×4
2
d=15
,解得
a1=1
d=1

∴an=1+(n-1)×1=n.
1
anan+1
=
1
n(n+1)
=
1
n
-
1
n+1

∴數(shù)列{
1
anan-1
}的前n項(xiàng)和Sn=(1-
1
2
)+(
1
2
-
1
3
)
+…+(
1
n
-
1
n+1
)
=
n
n+1

∴數(shù)列{
1
anan-1
}的前200項(xiàng)和=
200
201

故選:A.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
|=2,
a
=-
b
,求
a
|
b
|
b
的模長(zhǎng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,p是二面角α-l-β內(nèi)的一點(diǎn)(p∉α,p∉β),PA⊥α于點(diǎn)A,PB⊥β于點(diǎn)B,∠APB=35°,則二面角α-l-β的大小是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以雙曲線
x2
4
-
y2
9
=1的左頂點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程是(  )
A、y2=4x
B、y2=16x
C、y2=8x
D、y2=-8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg(
2x
2+x
+a),其中a為常數(shù),且a≥-2.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)為奇函數(shù),①求a的值;②求函數(shù)g(x)=f(x)-lg(m-x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)在定義域R是偶函數(shù),f(1)=0,當(dāng)x>0時(shí)有xf′(x)+f(x)>0則x2f(x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(I) 證明數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=
n(an+1)
2
,求數(shù)列{bn}的前n項(xiàng)和Sn;
(Ⅲ)證明:
n
2
-
1
3
a1
a2
+
a2
a3
+…+
an
an+1
n
2
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫出直線
3
x+y+1=0關(guān)于直線y=-x對(duì)稱的直線的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程lnx+x-5=0在區(qū)間(a,b)(a,b∈Z,且b-a=1)上有一實(shí)根,則a的值為(  )
A、5B、4C、3D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案