16.若函數(shù)y=f(x)(x∈R)滿足f(x+1)=-f(x),且x∈[-1,1]時(shí),f(x)=1-x2,函數(shù)g(x)=$\left\{\begin{array}{l}lgx({x>0})\\-\frac{1}{x}({x<0})\end{array}$則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)的個(gè)數(shù)為8.

分析 判斷出f(x)的周期為2,轉(zhuǎn)化為函數(shù)f(x)與g(x)函數(shù)圖象的交點(diǎn)個(gè)數(shù),畫出圖象即可判斷.

解答 解:∵數(shù)y=f(x)(x∈R)滿足f(x+1)=-f(x),
∴f(x+2)=f(x),
即f(x)的周期為2,
∵h(yuǎn)(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點(diǎn)的個(gè)數(shù)為,
∴函數(shù)f(x)與g(x)函數(shù)圖象的交點(diǎn)個(gè)數(shù),

根據(jù)函數(shù)圖象判斷:f(x)與g(x)函數(shù)圖象的交點(diǎn)個(gè)數(shù)8,
故答案為:8

點(diǎn)評 本題考查了函數(shù)的零點(diǎn),轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題求解,考查了學(xué)生的畫圖能力,運(yùn)用圖形判斷問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在高中數(shù)學(xué)課本中我們見過許多的“信息技術(shù)應(yīng)用”,我們可以利用幾何畫板軟件的拖動(dòng)、動(dòng)畫及計(jì)算等功能來研究許多數(shù)學(xué)問題,比如:在平面內(nèi)做一條線段KL,以定點(diǎn)A為圓心,以|KL|為半徑作一圓,在圓內(nèi)取一定點(diǎn)F,在圓上取動(dòng)點(diǎn)B,作線段BF的中垂線與圓A的半徑AB交于點(diǎn)P.當(dāng)點(diǎn)B在圓上運(yùn)動(dòng)時(shí),就會(huì)發(fā)現(xiàn)點(diǎn)P的運(yùn)動(dòng)軌跡.
(Ⅰ)你能猜出點(diǎn)P的軌跡是什么曲線嗎?請說明理由;若|KL|=6,|AF|=4,以線段AF的中點(diǎn)O為原點(diǎn),以直線AF為x軸,建立平面直角坐標(biāo)系,試求點(diǎn)P的軌跡方程;
(Ⅱ)在(Ⅰ)的條件下,過點(diǎn)A作直線l與點(diǎn)P的軌跡交于兩點(diǎn)M、N,試求線段MN的中點(diǎn)Q的軌跡方程;
(Ⅲ)拖動(dòng)改變線段KL的長度,會(huì)發(fā)現(xiàn)點(diǎn)P的軌跡C的形狀在發(fā)生變化,請問在保持(Ⅰ)中軌跡C類型不變的前提下,當(dāng)C的離心率e在什么范圍變化時(shí),C上總存在點(diǎn)R,使得AR⊥FR?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A,B,P是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上的不同三點(diǎn),且AB連線經(jīng)過坐標(biāo)原點(diǎn),若直線PA,PB的斜率乘積${k_{PA}}•{k_{PB}}=\frac{2}{3}$,則該雙曲線的離心率e=( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{15}}}{3}$C.$\frac{{\sqrt{10}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)y=f(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f″(x),若在區(qū)間(a,b)上f″(x)<0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”.已知f(x)=$\frac{1}{12}$x4-$\frac{1}{6}$mx3-$\frac{3}{2}$x2,若對任意的實(shí)數(shù)m滿足|m|≤2時(shí),函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,則b-a的最大值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)矩陣M=$(\begin{array}{l}{1}&{a}\\&{1}\end{array})$.
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C′:x2-2y2=1,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.有兩個(gè)每項(xiàng)都是正數(shù)的數(shù)列{an}、{bn},a1=1,b1=2,a2=3,且bn是an與an+1的等差中項(xiàng),an+1是bn與bn+1的等比中項(xiàng),求$\frac{{a}_{n}}{_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且x∈[0,2]時(shí),f(x)=log2(x+1),給出下列結(jié)論:
①f(3)=1;②函數(shù)f(x)在[-6,-2]上是增函數(shù);③函數(shù)f(x)的圖象關(guān)于直線x=1對稱;④若m∈(0,1),則關(guān)于x的方程f(x)-m=0在[-8,16]上的所有根之和為12.
則其中正確的命題為①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在△ABC中,BC邊上的中線為AD.
(1)若AD=BD=2,AB=3,求ABC的面積;
(2)若∠ABC=30°,∠ACB=45°,求tan∠BAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知等差數(shù)列{an)的前n項(xiàng)和為Sn=-n2+(10+k)n+(k-1),則實(shí)數(shù)k=1,an=-2n+12.

查看答案和解析>>

同步練習(xí)冊答案