分析 等差數(shù)列{an)的前n項和為Sn=-n2+(10+k)n+(k-1),可得k=1,可得Sn=-n2+11n;當(dāng)n=1時,可得a1;當(dāng)n≥2時,an=Sn-Sn-1,即可得出.
解答 解:∵等差數(shù)列{an)的前n項和為Sn=-n2+(10+k)n+(k-1),
∴k=1,
∴Sn=-n2+11n,
當(dāng)n=1時,a1=-1+11=10;
當(dāng)n≥2時,an=Sn-Sn-1=-n2+11n-[-(n-1)2+11(n-1)]=-2n+12,
當(dāng)n=1時上式也成立.
∴an=-2n+12.
故答案為:1;-2n+12.
點評 本題考查了等差數(shù)列的通項公式及其前n項和公式、遞推式的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 10 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ω=$\frac{10}{11}$,φ=$\frac{π}{6}$ | B. | ω=2,φ=$\frac{π}{12}$ | C. | ω=2,φ=$\frac{π}{6}$ | D. | ω=$\frac{10}{11}$,φ=$\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{5π}{4}$ | D. | $\frac{7π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com