已知實(shí)數(shù),函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)當(dāng)時(shí),判斷的單調(diào)性,并說(shuō)明理由;
(3)求實(shí)數(shù)的范圍,使得對(duì)于區(qū)間上的任意三個(gè)實(shí)數(shù),都存在以為邊長(zhǎng)的三角形.
(1)2;(2)遞增;(3).
解析試題分析:(1)研究函數(shù)問(wèn)題,一般先研究函數(shù)的性質(zhì),如奇偶性,單調(diào)性,周期性等等,如本題中函數(shù)是偶函數(shù),因此其最小值我們只要在時(shí)求得即可;(2)時(shí),可化簡(jiǎn)為,下面我們只要按照單調(diào)性的定義就可證明在上函數(shù)是單調(diào)遞增的,當(dāng)然在上是遞減的;(3)處理此問(wèn)題,首先通過(guò)換元法把問(wèn)題簡(jiǎn)化,設(shè),則函數(shù)變?yōu)?img src="http://thumb.1010pic.com/pic5/tikupic/68/2/13zro3.png" style="vertical-align:middle;" />,問(wèn)題變?yōu)榍髮?shí)數(shù)的范圍,使得在區(qū)間上,恒有.對(duì)于函數(shù),我們知道,它在上遞減,在上遞增,故我們要討論它在區(qū)間上的最大(。┲,就必須分類討論,分類標(biāo)準(zhǔn)顯然是,,,在時(shí)還要討論最大值在區(qū)間的哪個(gè)端點(diǎn)取得,也即共分成四類.
試題解析:易知的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/55/e/xtymf3.png" style="vertical-align:middle;" />,且為偶函數(shù).
(1)時(shí), 2分
時(shí)最小值為2. 4分
(2)時(shí),
時(shí),遞增;時(shí),遞減; 6分
為偶函數(shù).所以只對(duì)時(shí),說(shuō)明遞增.
設(shè),所以,得
所以時(shí),遞增; 10分
(3),,
從而原問(wèn)題等價(jià)于求實(shí)數(shù)的范圍,使得在區(qū)間上,
恒有. 11分
①當(dāng)時(shí),在上單調(diào)遞增,
由得,
從而; 12分
②當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,
,
由得,從而; 13分
③當(dāng)時(shí),在
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是定義在上的奇函數(shù),當(dāng)時(shí),.
(1)求;
(2)求的解析式;
(3)若,求區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
我國(guó)西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬(wàn)元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)與第x天近似地滿足(千人),且參觀民俗文化村的游客人均消費(fèi)近似地滿足(元).
(1)求該村的第x天的旅游收入(單位千元,1≤x≤30,)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問(wèn)該村在兩年內(nèi)能否收回全部投資成本?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)滿足且.
(1)求證,并求的取值范圍;
(2)證明函數(shù)在內(nèi)至少有一個(gè)零點(diǎn);
(3)設(shè)是函數(shù)的兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求函數(shù)定義域和函數(shù)圖像所過(guò)的定點(diǎn);
(2)若已知時(shí),函數(shù)最大值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)與交于兩點(diǎn)且,奇函數(shù),當(dāng)時(shí),與都在取到最小值.
(1)求的解析式;
(2)若與圖象恰有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com