15.圓C1:(x-3)2+y2=1,圓C2:(x+3)2+y2=4,若圓M與兩圓都相切,則圓心M的軌跡是( 。
A.兩個橢圓B.兩條雙曲線
C.兩條雙曲線的左支D.兩條雙曲線的右支

分析 由于動圓與兩個定圓都相切,可分兩類考慮,若動圓與兩定圓相外切或與兩定圓都內(nèi)切;一內(nèi)切一外切,則到兩圓圓心的距離差是一個常數(shù),由雙曲線的定義知,軌跡是雙曲線.

解答 解:由題意,圓M與兩圓都外切,則|MC2|-|MC1|=1.
圓M與兩圓都內(nèi)切,則|MC1|-|MC2|=1
圓M與一個圓外切,一個圓內(nèi)切,則||MC2|-|MC1||=3,
故選:B.

點評 本題考查圓與圓的位置關(guān)系,考查雙曲線的定義,考查分類討論的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等比數(shù)列{an}的各項均為正數(shù),且a1=1,a2+a3=6,求該數(shù)列的前n項和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an},a1=2,a4=7.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若x∈[0,+∞),則下列不等式恒成立的是( 。
A.$\frac{1}{\sqrt{1+x}}$<1-$\frac{1}{2}$x+$\frac{1}{4}$x2B.ln(1+x)≥x-$\frac{1}{8}$x2C.ex≤1+x+x2D.cosx≥1-$\frac{1}{2}$x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知F1和F2分別是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的兩個焦點,A和B是以O(shè)為圓心,以|OF1|為半徑的圓與該雙曲線左支的兩個交點,且△F2AB是等邊三角形,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{3}+1}}{2}$B.$\sqrt{3}-1$C.$\sqrt{3}+1$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.復(fù)數(shù)z=a+bi(a,b∈R,i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)點為Z,設(shè)r=|$\overline{OZ}$|,θ是以x軸的非負(fù)半軸為始邊,以O(shè)Z所在的射線為終邊的角,則z=a+bi=r(cosθ+isinθ),把r(cosθ+isinθ)叫做復(fù)數(shù)a+bi的三角形式.
(1)用數(shù)學(xué)歸納法證明:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ)(n∈N*);
(2)利用等式(1+i)100=[$\sqrt{2}$(cos$\frac{π}{4}$+isin$\frac{π}{4}$)]100,求C${\;}_{100}^{0}$-C${\;}_{100}^{2}$+C${\;}_{100}^{4}$-C${\;}_{100}^{6}$+…-C${\;}_{100}^{98}$+C${\;}_{100}^{100}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足,|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,(2$\overrightarrow{a}$-3$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=61,
(Ⅰ)求$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(Ⅱ)求|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知正數(shù)組成的等比數(shù)列{an},若a1•a20=100,那么a7+a14的最小值為( 。
A.20B.25C.50D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.計算:
(1)${∫}_{-4}^{3}$|x+2|dx;   
(2)${∫}_{0}^{1}$$\sqrt{4-{x}^{2}}$dx.

查看答案和解析>>

同步練習(xí)冊答案