分析 分別代入A,B,解方程可得a=1,b=0,再求y=sinx的導(dǎo)數(shù),求得切線的斜率,再由點斜式方程即可得到切線方程.
解答 解:由題意可得,
asin0+b=0,asin$\frac{3π}{2}$+b=-1,
即有b=0,-a+b=-1,
則a=1,b=0,
即y=sinx.
y′=cosx,
函數(shù)在原點處的切線斜率為k=cos0=1,
則函數(shù)在原點處的切線方程為y=x.
點評 本題考查導(dǎo)數(shù)的運用:求切線方程,主要考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點處的導(dǎo)數(shù)即為曲線在該點處切線的斜率,同時考查待定系數(shù)法求函數(shù)的解析式,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | α<β | B. | α>β | C. | α+β>3π | D. | α+β<2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3-$\sqrt{2}$ | B. | $\frac{3-\sqrt{2}}{2}$ | C. | $\frac{3+\sqrt{2}}{2}$ | D. | $\frac{6-\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com