分析 (1)由θ是第二象限角,得0<sinθ<1,-1<cosθ<0,由此能判斷tan(sinθ)•cot(cosθ)的符號.
(2)由θ是第一象限角,第二象限角,第三象限角,第四象限角分別進行討論,由此能求出結果.
解答 解:(1)∵θ是第二象限角,
∴0<sinθ<1,-1<cosθ<0,
∴tan(sinθ)>0,
cot(cosθ)<0,
∴tan(sinθ)•cot(cosθ)<0.
(2)∵sin(cosθ)•cos(sinθ)<0,
∴假設θ是第一象限角,則0<cosθ<1<$\frac{π}{2}$,0<sinθ<1<$\frac{π}{2}$,
sin(cosθ)>0,cos(sinθ)>0,sin(cosθ)•cos(sinθ)>0 不符合要求;
假設θ是第二象限角,則-$\frac{π}{2}$<-1<cosθ<0,0<sinθ<1<$\frac{π}{2}$,
sin(cosθ)<0,cos(sinθ)>0,sin(cosθ)•cos(sinθ)<0,符合要求;
假設θ是第三象限角,則-$\frac{π}{2}$<-1<cosθ<0,-$\frac{π}{2}$<-1<sinθ<0,
sin(cosθ)<0,cos(sinθ)>0,sin(cosθ)•cos(sinθ)<0,符合要求;
假設θ是第四象限角,則0<cosθ<1<$\frac{π}{2}$,-$\frac{π}{2}$<-1<sinθ<0,
sin(cosθ)>0,cos(sinθ)>0,sin(cosθ)•cos(sinθ)>0,不符合要求.
綜上,θ為第二或第三象限角.
點評 本題考查三角函數(shù)值的符號的判斷,考查角所在象限的判斷,是基礎題,解題時要認真審題,注意分類討論思想的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有一個零點 | B. | 有兩個零點 | C. | 可能沒有零點 | D. | 以上說法不正確 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{19}{13}$ | B. | $\frac{20}{13}$ | C. | $\frac{21}{13}$ | D. | $\frac{22}{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{5π}{6}$,0) | B. | ($\frac{π}{3}$,0) | C. | ($\frac{π}{6}$,0) | D. | (-$\frac{π}{3}$,0) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com