7.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{2}$),$\overrightarrow$=(cosx,-1),當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時,2cos2x-sin2x的值為( 。
A.$\frac{19}{13}$B.$\frac{20}{13}$C.$\frac{21}{13}$D.$\frac{22}{13}$

分析 由$\overrightarrow{a}$∥$\overrightarrow$,可得$\frac{3}{2}cosx$+sinx=0,可得tanx.化簡2cos2x-sin2x=$\frac{2co{s}^{2}x-2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{2-2tanx}{ta{n}^{2}x+1}$,代入即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow$,
∴$\frac{3}{2}cosx$+sinx=0,
解得tanx=-$\frac{3}{2}$.
∴2cos2x-sin2x=$\frac{2co{s}^{2}x-2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{2-2tanx}{ta{n}^{2}x+1}$=$\frac{2-2×(-\frac{3}{2})}{(-\frac{3}{2})^{2}+1}$=$\frac{20}{13}$.
故選:B.

點評 本題考查了向量共線定理、倍角公式、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2cosx(sinx+cosx)-1
(Ⅰ)求f(x)在區(qū)間[0,$\frac{π}{4}$]上的最大值;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且f($\frac{3}{4}$B)=1,a+c=2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.?dāng)?shù)列{an}是公差為正數(shù)的等差數(shù)列,a1+a4=12,a1•a4=27,數(shù)列{bn}的前n項和為Tn,且Tn=1-bn(n∈N*
(1)求數(shù)列{an},{bn}的通項公式;
(2)記cn=an•bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△OAB中,已知P為線段AB上一點,$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$.
(1)若$\overrightarrow{BP}$=2$\overrightarrow{PA}$,求x,y的值;
(2)若$\overrightarrow{BP}$=3$\overrightarrow{PA}$,|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=2,且$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為60°,求$\overrightarrow{OP}$•$\overrightarrow{AB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosφ}\\{y=1+sinφ}\end{array}\right.$(φ為參數(shù)),直線l平行于x軸,且過點(0,3),以原點O為極點,x鈾的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程及直線l的參數(shù)方程;
(Ⅱ)過原點O的直線11交圓C于O,A,交直線l于B,求|OA|•|OB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知θ是第二象限角,試判斷tan(sinθ)•cot(cosθ)的符號;
(2)若sin(cosθ)•cos(sinθ)<0,則θ為第幾象限角?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知sinα+cosα=$\frac{\sqrt{3}}{3}$,求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如果關(guān)于x的不等式ax2-丨x+1丨+2a<0的解集為空集,則實數(shù)的取值范圍是( 。
A.[$\frac{1+\sqrt{3}}{4}$,+∞)B.[2,+∞)C.[$\frac{\sqrt{3}-1}{4}$,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若(x+1)${\;}^{-\frac{2}{3}}$<(3-2x)${\;}^{-\frac{2}{3}}$,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案