分析 由已知利用正弦定理可求sinB,結(jié)合B的范圍,利用特殊角的三角函數(shù)值可求B,利用三角形內(nèi)角和定理可求A,進(jìn)而利用三角形面積公式即可計算得解.
解答 解:由正弦定理$\frac{sinB}=\frac{c}{sinC}⇒sinB=\frac{bsinC}{c}=\frac{1}{2}$,
又c>b,且B∈(0,π),
所以$B=\frac{π}{6}$,
所以$A=\frac{7π}{12}$,
所以$S=\frac{1}{2}bcsinA=\frac{1}{2}×2×2\sqrt{2}sin\frac{7π}{12}=\frac{1}{2}×2×2\sqrt{2}×\frac{{\sqrt{6}+\sqrt{2}}}{4}=\sqrt{3}+1$.
故答案為:$\sqrt{3}+1$.
點評 本題主要考查了正弦定理,特殊角的三角函數(shù)值,三角形內(nèi)角和定理,三角形面積公式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 12 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -3 | C. | 3 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{5}$或$\frac{{\sqrt{10}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$或$\frac{{\sqrt{10}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | $\frac{12}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com