17.設(shè)i是虛數(shù)單位,$\overline{z}$是復(fù)數(shù)z的共軛復(fù)數(shù),若(1-i)$\overline{z}$=2,則z為( 。
A.1+iB.1-iC.2+iD.2-i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵(1-i)$\overline{z}$=2,∴(1+i)(1-i)$\overrightarrow{z}$=2(1+i),∴$\overline{z}$=1+i,
∴z=1-i,
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.給定正奇數(shù)n(n≥5),數(shù)列{an}:a1,a2,…,an是1,2,…,n的一個(gè)排列,定義E(a1,a2,…,an)=|a1-1|+|a2-2|+…+|an-n|為數(shù)列{an}:a1,a2,…,an的位差和.
(Ⅰ)當(dāng)n=5時(shí),求數(shù)列{an}:1,3,4,2,5的位差和;
(Ⅱ)若位差和E(a1,a2,…,an)=4,求滿足條件的數(shù)列{an}:a1,a2,…,an的個(gè)數(shù);
(Ⅲ)若位差和E(a1,a2,…,an)=$\frac{{{n^2}-1}}{2}$,求滿足條件的數(shù)列{an}:a1,a2,…,an的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知過點(diǎn)A(-1,-1)的直線l與圓x2+y2-2x+6y+6=0相交,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若復(fù)數(shù)z=5cosα-4•i(i為虛數(shù)單位,-π<α<0)在復(fù)平面上的對(duì)應(yīng)點(diǎn)在直線y=x-1上,則sinα=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若復(fù)數(shù)(a-2)+i(i是虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為$\frac{π}{2}$的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象.關(guān)于函數(shù)g(x),下列說法正確的是( 。
A.在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函數(shù)
B.其圖象關(guān)于直線x=-$\frac{π}{4}$對(duì)稱
C.函數(shù)g(x)是奇函數(shù)
D.當(dāng)x∈[$\frac{π}{6}$,$\frac{2}{3}$π]時(shí),函數(shù)g(x)的值域是[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知全集U=R,集合A={y|y=2x,x∈R},B={x|x≥2},則A∩(∁UB)=( 。
A.B.{0,1}C.(0,2)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示的程序框圖,其輸出結(jié)果是( 。
A.1365B.1364C.341D.1366

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義在R上的函數(shù)f(x)對(duì)任意x1、x2(x1≠x2)都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且函數(shù)y=f(x-1)的圖象關(guān)于(1,0)成中心對(duì)稱,若s,t滿足不等式f(s2-2s)≤-f(2t-t2),則當(dāng)1≤s≤4時(shí),$\frac{t-2s}{s+t}$的取值范圍是(  )
A.[-3,-$\frac{1}{2}$)B.[-3,-$\frac{1}{2}$]C.[-5,-$\frac{1}{2}$)D.[-5,-$\frac{1}{2}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案