分析 (1)由題意,可得A=2,$\frac{T}{4}$=$\frac{π}{3}$$-\frac{π}{12}$=$\frac{π}{4}$,利用周期公式可求ω,將($\frac{π}{12}$,0)代入解析式得sin($\frac{π}{6}$+φ)=0,結(jié)合范圍φ∈(-$\frac{π}{2}$,0),即可得解.
(2)由x∈(-$\frac{π}{3}$,$\frac{π}{4}$),可得2x$-\frac{π}{6}$∈(-$\frac{5π}{6}$,$\frac{π}{3}$),利用正弦函數(shù)的圖象和性質(zhì)即可求得f(x)的取值范圍.
解答 解:(1)由題意,A=2,$\frac{T}{4}$=$\frac{π}{3}$$-\frac{π}{12}$=$\frac{π}{4}$,
∴T=$\frac{2π}{ω}$=π,ω=2,
∴f(x)=2sin(2x+φ),將($\frac{π}{12}$,0)代入,得sin($\frac{π}{6}$+φ)=0,
∵φ∈(-$\frac{π}{2}$,0),
故φ=$-\frac{π}{6}$,
∴函數(shù)y=f(x)的解析式為f(x)=2sin(2x$-\frac{π}{6}$).
(2)∵x∈(-$\frac{π}{3}$,$\frac{π}{4}$),
∴2x$-\frac{π}{6}$∈(-$\frac{5π}{6}$,$\frac{π}{3}$),
∴f(x)=2sin(2x$-\frac{π}{6}$)∈[-2,$\sqrt{3}$).
點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象和性質(zhì),屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m、n都平行于平面α,則m、n一定不是相交直線(xiàn). | |
B. | m、n在平面α內(nèi)的射影互相垂直,則m、n互相垂直 | |
C. | 若m、n都垂直于平面α,則m、n一定是平行直線(xiàn). | |
D. | 已知α、β互相垂直,m、n互相垂直,若m⊥α,則n⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2k+2}$ | B. | $\frac{1}{2k+1}$+$\frac{1}{2k+2}$ | C. | $\frac{1}{2k+1}$-$\frac{1}{2k+2}$ | D. | $\frac{1}{2k+1}$-$\frac{3}{2k+2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com