11.定義max{{x,y}=$\left\{\begin{array}{l}x,x≥y\\ y,x<y\end{array}$,設(shè)f(x)=max{ax-a,-logax}(x∈R+,a>0,a≠1).若a=$\frac{1}{4}$,則f(2)+f(${\frac{1}{2}}$)=$\frac{3}{4}$;若a>1,則不等式f(x)≥2的解集是$\{x|0<x≤\frac{1}{a^2}$或x≥loga(a+2)}.

分析 第一空,求出分段函數(shù)的解析式,然后求解函數(shù)值即可.第二空,利用分段函數(shù)列出不等式求解即可.

解答 解:a=$\frac{1}{4}$,f(x)=max{($\frac{1}{4}$)x-$\frac{1}{4}$,-log$\frac{1}{4}$x}=$\left\{\begin{array}{l}{(\frac{1}{4})^{x}-\frac{1}{4},0<x≤1}\\{-lo{g}_{\frac{1}{4}}x,x>1}\end{array}\right.$,
則f(2)+f(${\frac{1}{2}}$)=$\frac{1}{2}+$$\frac{1}{2}-\frac{1}{4}$=$\frac{3}{4}$.
不等式f(x)≥2,可得ax-a≥2,解得x≥loga(a+2),-logax≥2,解得$0<x≤\frac{1}{{a}^{2}}$.
故答案為:$\frac{3}{4}$,$\{x|0<x≤\frac{1}{a^2}$或 x≥loga(a+2)},

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x+1)=x2+2x,則f(x-1)=x2-2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)常數(shù)a>0,若9x+$\frac{a^2}{4x}$≥a2-4對(duì)一切正實(shí)數(shù)x成立,則a的取值范圍是( 。
A.[-1,4]B.[-4,1]C.(0,1]D.(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)P(2,-1).
(Ⅰ)求過P點(diǎn)且與原點(diǎn)距離為2的直線l的方程;
(Ⅱ)求過P點(diǎn)且與兩坐標(biāo)軸截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=mx-1,g(x)=-1+logmx(m>0,m≠1),有如下兩個(gè)命題:
p:f(x)的定義域和g[f(x)]的值域相等.
q:g(x)的定義域和f[g(x)]的值域相等.
則( 。
A.命題p,q都正確B.命題p正確,命題q不正確
C.命題p,q都不正確D.命題q不正確,命題p正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=$\left\{\begin{array}{l}(3a-1)x+4a(x≤1)\\{log_a}x(x>1)\end{array}$是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.(0,1)B.$(0,\frac{1}{3})$C.$[\frac{1}{7},\frac{1}{3})$D.$[\frac{1}{7},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=ln(2+x)+ln(2-x),則f(x)是( 。
A.奇函數(shù),且在(0,2)上是增函數(shù)B.奇函數(shù),且在(0,2)上是減函數(shù)
C.偶函數(shù),且在(0,2)上是增函數(shù)D.偶函數(shù),且在(0,2)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(t,3),向量$\overrightarrow$在$\overrightarrow{a}$方向上的投影為-3,則t=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.計(jì)算下列各式的值:
(1)log4$\sqrt{8}$+lg50+lg2+5${\;}^{lo{g}_{5}3}$+(-9.8)0;
(2)($\frac{27}{64}$)${\;}^{\frac{2}{3}}$-($\frac{25}{4}$)0.5+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案