20.如圖所示,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.
注:圓臺(tái)的體積和側(cè)面積公式:
V臺(tái)=$\frac{1}{3}$(S+S+$\sqrt{S上•S下}$)h=$\frac{1}{3}$π(r${\;}_{1}^{2}$+r${\;}_{2}^{2}$+r1r2)h
S側(cè)=π(r+r)l
圓錐的側(cè)面積公式:V=$\frac{1}{3}$Sh,S側(cè)=πrl.

分析 畫出四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體,然后求出圓臺(tái)的底面積、圓臺(tái)的側(cè)面積及圓錐的側(cè)面積作和得答案;由圓臺(tái)的體積減去圓錐的體積求得幾何體的體積.

解答 解:如圖,∵∠ADC=135°,∴∠CDE=45°,又CD=2$\sqrt{2}$,
∴DE=CE=2,又AB=5,AD=2,
∴BC=$\sqrt{{3}^{2}+{4}^{2}}=5$.

則圓臺(tái)上底面半徑r1=2,下底面半徑r2=5,高h(yuǎn)=4,母線長l=5,圓錐底面半徑r1=2,高h(yuǎn)′=2.
∴S表面=S圓臺(tái)底面+S圓臺(tái)側(cè)面+S圓錐側(cè)面=π×52+π×(2+5)×5+π×2×2$\sqrt{2}$
=(4$\sqrt{2}$+60)π;
V=V圓臺(tái)-V圓錐=$\frac{1}{3}$π(${{r}_{1}}^{2}$+r1r2+${{r}_{2}}^{2}$)h-$\frac{1}{3}$π${{r}_{1}}^{2}$h′=$\frac{1}{3}$π(25+10+4)×4-$\frac{1}{3}$π×4×2=$\frac{148}{3}$π.

點(diǎn)評(píng) 本題考查圓錐、圓臺(tái)的體積的求法,明確四邊形ABCD繞直線AD旋轉(zhuǎn)所得圖形是解答該題的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知正數(shù)x,y滿足x+y=4,則log2x+log2y的最大值是( 。
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知拋物線y2=16x的焦點(diǎn)F,M是拋物線C上位于第一象限內(nèi)的一點(diǎn),O為坐標(biāo)原點(diǎn),若△OFM的外接圓D與拋物線C的準(zhǔn)線相切,則圓D與直線x-$\sqrt{3}$y-2=0相交得到的弦長為( 。
A.$2\sqrt{3}$B.4C.$2\sqrt{6}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題中錯(cuò)誤的個(gè)數(shù)是:( 。
①誘導(dǎo)公式sin(π+α)=-sinα中角α必為銳角;
②鈍角必為第二象限角;
③若cosθ<0,則θ必為第二或第三象限的角;
④正切函數(shù)y=tanx在定義域內(nèi)必為增函數(shù).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.b2=ac是$\frac{a}$=$\frac{c}$成立的( 。
A.充分而不必要條件B.充要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,an+1=2Sn+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的各項(xiàng)均為正數(shù),且$\frac{b_n}{2}$是$\frac{n}{a_n}$與$\frac{n}{{{a_{n+2}}}}$的等比中項(xiàng),求bn的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若a=20.5,b=logπ3,c=ln$\frac{1}{3}$,則a,b,c按從大到小的順序依次排列為a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在數(shù)列{an}中,a1=1,a2=4,若{an}為等差數(shù)列,則數(shù)列{an}的第10項(xiàng)為(  )
A.22B.25C.31D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知關(guān)于x不等式y(tǒng)=log2(x2-a|x|+3)≥1恒成立,則實(shí)數(shù)a的取值范圍為(-∞,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案