已知A(5,2),B(-1,1),P是直線(xiàn)y=x上一點(diǎn),則P到A、B距離之差的最大值是(  )
A、3
5
B、5
C、5
3
D、0
考點(diǎn):與直線(xiàn)關(guān)于點(diǎn)、直線(xiàn)對(duì)稱(chēng)的直線(xiàn)方程
專(zhuān)題:直線(xiàn)與圓
分析:點(diǎn)B(-1,1)關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)點(diǎn)為C,可得AC的方程,易得AC和直線(xiàn)y=x的交點(diǎn)P的坐標(biāo),此時(shí),PA-PC=PA-PB=AC,為P到A、B距離之差的最大值.
解答: 解:點(diǎn)B(-1,1)關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)點(diǎn)為C(1,-1),可得AC的方程為
y+1
2+1
=
x-1
5-1
,即 3x-4y-7=0,
易得AC和直線(xiàn)y=x的交點(diǎn)P(-7,-7),
此時(shí),PA-PC=PA-PB=AC=5為P到A、B距離之差的最大值,
故選:B.
點(diǎn)評(píng):本題主要考查點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)的求法,線(xiàn)段的垂直平分線(xiàn)的性質(zhì),體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x3
3
+
1
2
ax2
+2bx+c,方程f′(x)=0兩個(gè)根分別在區(qū)間(0,1)與(1,2)內(nèi),則
b-2
a-1
的取值范圍為(  )
A、(
1
4
,1)
B、(-∞,
1
4
)∪(1,∞)
C、(-1,-
1
4
D、(
1
4
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,點(diǎn)G為中線(xiàn)AD上一點(diǎn),且AG=
1
2
AD,過(guò)點(diǎn)G的直線(xiàn)分別交AB,AC于點(diǎn)E,F(xiàn),若
AE
=m
AB
,
AF
=n
AC
,則
1
m
+
1
n
的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的對(duì)稱(chēng)中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為A(0,2),右焦點(diǎn)F與點(diǎn)B(
2
,
2
)的距離為2,則橢圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x=
ab
是a,xb成等比數(shù)列的( 。l件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,在(0,+∞)上是單調(diào)遞增的偶函數(shù)的是( 。
A、y=cosx
B、y=x3
C、y=ex+e-x
D、y=log
1
2
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各題的值.
(1)已知函數(shù)f(x)=ax+a-x(a>0,a≠1),且f(1)=3,計(jì)算f(0)+f(1)+f(2)的值;
(2)設(shè)2a=5b=m,且
1
a
+
1
b
=1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某城市缺水問(wèn)題比較突出,為了制定節(jié)水管理辦法,對(duì)全市居民某年的月均用水量進(jìn)行了抽樣調(diào)查,其中n位居民的月均用水量分別為x1,…,xn(單位:噸).根據(jù)圖所示的程序框圖,若n=2,且x1,x2分別為1,2,則輸出的結(jié)果s為.( 。
A、1
B、
3
2
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F是橢圓E:
x2
a2
+
y2
b2
=1,(a>b>0)的左焦點(diǎn),直線(xiàn)l方程為x=-
a2
c
(其中a為橢圓的長(zhǎng)半軸長(zhǎng),c為半焦距),設(shè)直線(xiàn)l與x軸交于P點(diǎn),MN為橢圓E的長(zhǎng)軸,已知|MN|=8,且|PM|=2|MF|.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)P作直線(xiàn)m與橢圓E交于A,B兩點(diǎn),求證:∠AFM=∠BFN;
(3)在(2)的條件下,求三角形△ABF面積的最大值及此時(shí)直線(xiàn)m的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案