16.最近幾年,每年11月初,黃浦江上漂浮著的水葫蘆便會(huì)迅速增長(zhǎng),嚴(yán)重影響了市容景觀,為了解決這個(gè)環(huán)境問題,科研人員進(jìn)行科研攻關(guān),如圖是科研人員在實(shí)驗(yàn)室池塘中觀察水葫蘆面積與時(shí)間的函數(shù)關(guān)系圖象,假設(shè)其函數(shù)關(guān)系為指數(shù)函數(shù),并給出下列說法:
①此指數(shù)函數(shù)的底數(shù)為2;
②在第5個(gè)月時(shí),水葫蘆的面積會(huì)超過30m2;
③設(shè)水葫蘆面積蔓延至2m2、3m2、6m2所需要的時(shí)間分別為t1、t2、t3,則有t1+t2=t3
其中正確的說法有( 。
A.①②B.②③C.①③D.①②③

分析 根據(jù)圖象判斷其關(guān)系為指數(shù)函數(shù),由圖象過(4,16)點(diǎn)求出底數(shù)為2判斷①;把t=5代入求出s判斷②;利用指對(duì)互化求出三個(gè)時(shí)間的值,由對(duì)數(shù)的運(yùn)算判斷③.

解答 解:由圖得其關(guān)系為指數(shù)函數(shù),
①、因圖象過(4,16)點(diǎn),所以指數(shù)函數(shù)的底數(shù)為2,故①正確;
②、當(dāng)t=5時(shí),s=32>30,故②正確;
③、由圖得t1=log22=1,t2=log23,t3=log26,
則t1+t2=t3,故③正確,
綜上可知①②③正確.
故選:D.

點(diǎn)評(píng) 本題考查指數(shù)函數(shù)的圖象及解析式,對(duì)數(shù)的運(yùn)算性質(zhì),解題的關(guān)鍵由圖求出函數(shù)的解析式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2}$,an>0(n∈N),S3+a3,S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3an+2n-7,Tn是數(shù)列{bn}的前n項(xiàng)和,求Tn及Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+1|-2|x-a|,a∈R,若f(x)的圖象與x軸圍成的三角形面積大于6,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.己知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和圓C2:x2+y2=r2(r>0),已知圓C2的直徑是橢圓C1焦距長(zhǎng)的$\sqrt{2}$倍,且圓C2的面積為4π,橢圓C1的離心率為$\frac{\sqrt{6}}{3}$,過橢圓C1的上頂點(diǎn)A作一條斜率為k(k>0)的直線l與橢圓C1的另一個(gè)交點(diǎn)是B,與圓C2相交于點(diǎn)E,F(xiàn).
(1)求橢圓C1的方程;
(2)當(dāng)|AB|•|EF|=3$\sqrt{7}$時(shí),求直線l的方程,并求△F2AB的面積(其中F2為橢圓C1的右焦點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若集合A={y|y=x2+2x+3},集合B={y|y=x+$\frac{4}{x}$},則A∩B=[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖是根據(jù)某中學(xué)為地震災(zāi)區(qū)捐款的情況而制作的統(tǒng)計(jì)圖,已知該校在校學(xué)生3000人,根據(jù)統(tǒng)計(jì)圖計(jì)算該校共捐款37770元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在直三棱柱ABC-A1B1C1中,已知AB=AC,M,N,P分別為BC,CC1,BB1的中點(diǎn).求證:
(1)平面AMP⊥平面BB1C1C;
(2)A1N∥平面AMP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系xOy中,圓C1:(x-1)2+y2=2,圓C2:(x-m)2+(y+m)2=m2.圓C2上存在點(diǎn)P滿足:過點(diǎn)P向圓C1作兩條切線PA,PB,切點(diǎn)為A,B,△ABP的面積為1,則正數(shù)m的取值范圍是[1,$3+2\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.?dāng)?shù)列{an}中,a1=1,an+1=$\frac{n}{n+1}$•an,求an

查看答案和解析>>

同步練習(xí)冊(cè)答案