A. | {0} | B. | {0,$\frac{1}{2}$,1} | C. | {1,$\frac{1}{2}$} | D. | {0,$\frac{1}{2}$} |
分析 當(dāng)q=1時,Sn=na1,S2n=2na1,即可得出$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{2n}}$.當(dāng)q≠1時,Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,可得$\frac{{S}_{n}}{{S}_{2n}}$=$\frac{1}{1+{q}^{n}}$.對q分類討論即可得出.
解答 解:當(dāng)q=1時,Sn=na1,S2n=2na1,∴$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{2n}}$=$\frac{1}{2}$.
當(dāng)q≠1時,Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,
∴$\frac{{S}_{n}}{{S}_{2n}}$=$\frac{\frac{{a}_{1}(1-{q}^{n})}{1-q}}{\frac{{a}_{1}(1-{q}^{2n})}{1-q}}$=$\frac{1}{1+{q}^{n}}$.
∴S=$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{2n}}$=$\underset{lim}{n→∞}\frac{1}{1+{q}^{n}}$,
當(dāng)q>1時,S=0.
當(dāng)0<|q|<1時,S=1.
當(dāng)q<-1時,S=0.
綜上可得:集合M={0,1,$\frac{1}{2}$}.
故選:B.
點評 本題考查了等比數(shù)列的性質(zhì)及其前n項和公式、數(shù)列極限性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 既不是奇函數(shù),也不是偶函數(shù) | D. | 既是奇函數(shù),也是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 42 | B. | 40$\frac{1}{2}$ | C. | 40 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com