A. | 0<a≤$\frac{1}{e}$ | B. | 0<a≤$\frac{1}{{e}^{2}}$ | C. | a≥$\frac{1}{e}$ | D. | a≥$\frac{1}{{e}^{2}}$ |
分析 先考慮函數(shù)f(x)=ax與g(x)=logax(a>1)圖象僅有一個(gè)交點(diǎn),且在公共點(diǎn)處有公共的切線,a的值,再利用換元法,即可得出結(jié)論.
解答 解:先考慮函數(shù)f(x)=ax與g(x)=logax(a>1)圖象僅有一個(gè)交點(diǎn),
且在公共點(diǎn)處有公共的切線,a的值.
兩函數(shù)互為反函數(shù),則該切線即為y=x,設(shè)切點(diǎn)A,
可求出A(e,e),此時(shí)a=e${\;}^{\frac{1}{e}}$.
若a>e${\;}^{\frac{1}{e}}$時(shí),則f(x)=ax與g(x)=logax(a>1)無(wú)公共點(diǎn);
若1<a<e${\;}^{\frac{1}{e}}$時(shí),則f(x)=ax與g(x)=logax(a>1)有兩個(gè)公共點(diǎn).
對(duì)f(x)=eax-$\frac{1}{a}$lnx(a>0),換元令t=ea,即得tx=logtx,
由上知1<ea=t≤e${\;}^{\frac{1}{e}}$,得0<a≤$\frac{1}{e}$.
故選:A.
點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn),考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查學(xué)生轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (0,1) | C. | (1,2) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com