14.執(zhí)行如圖的程序框圖,若輸入x=12,則輸出y=(  )
A.$\frac{10}{3}$B.$\frac{5}{3}$C.$\frac{3}{10}$D.$\frac{3}{5}$

分析 由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量y的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬執(zhí)行程序框圖,可得
x=12,y=6,
不滿足條件|y-x|<1,x=6,y=4
不滿足條件|y-x|<1,x=4,y=$\frac{10}{3}$
由于|$\frac{10}{3}$|<1,故此時滿足條件|y-x|<1,退出循環(huán),輸出y的值為$\frac{10}{3}$.
故選:A.

點評 本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知$sinα=-\frac{{\sqrt{3}}}{2}$,求cosα、tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.從集合A={-2,1,2}中隨機選取一個數(shù)記為a,從集合B={-2,1,2}中隨機選取一個數(shù)記為b,則直線bx-y+a=0不經(jīng)過第四象限的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.閱讀如圖的程序框圖,若輸出S=30,則在判斷框 內(nèi)應填入( 。
A.i>5B.i>6C.i>4D.i≥4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.曲線C的方程為$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$,其中m,n是將一枚骰子先后投擲兩次所得的點數(shù),記事件A為“方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦點在x軸上的橢圓”,那么事件A發(fā)生的概率P(A)=$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,A、B分別是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$兩漸近線上的點,A、B在y軸上的射影分別為A1、B1,M、N分別是A1A、B1B、的中點,若AB中點在雙曲線上,且$\overrightarrow{OM}•\overrightarrow{ON}≥-{a^2}$,則雙曲線的離心率的取值范圍為( 。
A.$({1,\frac{3}{2}}]$B.$[\frac{3}{2},+∞)$C.$(1,\frac{{\sqrt{5}}}{2}]$D.$[\frac{{\sqrt{5}}}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在△ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA=$\frac{1}{3}$c,D是AC的中點,且cosB=$\frac{2\sqrt{5}}{5}$,BD=$\sqrt{26}$.
(1)求角A的大小;
(2)求△ABC的最短邊的邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.直線$\left\{\begin{array}{l}x=1+t\\ y=-1+t\end{array}\right.$(t為參數(shù))與曲線$\left\{\begin{array}{l}x=2cosα\\ y=2sinα\end{array}\right.$(α為參數(shù))的位置關系是相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.執(zhí)行如下程序框圖,則輸出的n=4.

查看答案和解析>>

同步練習冊答案