14.已知$\overrightarrow a$與$\overrightarrow b$的夾角為1200,且|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3.
(1)求$\overrightarrow a$•$\overrightarrow b$和|3$\overrightarrow a$+2$\overrightarrow b}$|;
(2)當(dāng)x為何值時(shí),x$\overrightarrow a$-$\overrightarrow b$與$\overrightarrow a$+3$\overrightarrow b$垂直?
(3)求$\overrightarrow a$與3$\overrightarrow a+2\overrightarrow b$的夾角.

分析 (1)根據(jù)向量數(shù)量積的定義和應(yīng)用即可求$\overrightarrow a$•$\overrightarrow b$和|3$\overrightarrow a$+2$\overrightarrow b}$|;
(2)根據(jù)向量垂直轉(zhuǎn)化為(x$\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+3$\overrightarrow b$)=0,解方程即可.
(3)根據(jù)向量數(shù)量積的應(yīng)用即可求$\overrightarrow a$與3$\overrightarrow a+2\overrightarrow b$的夾角.

解答 解:(1)∵$\overrightarrow a$與$\overrightarrow b$的夾角為1200,且|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3.
∴$\overrightarrow a•\overrightarrow b=|\overrightarrow a|•|\overrightarrow b|•cos{120°}=2×3×(-\frac{1}{2})=-3$,
∵$|3\overrightarrow a+2\overrightarrow b{|^2}=9|\overrightarrow a{|^2}+4|\overrightarrow b{|^2}+12\overrightarrow a•\overrightarrow b=36$,
∴$|3\overrightarrow a+2\overrightarrow b|=6$.
(2)若x$\overrightarrow a$-$\overrightarrow b$與$\overrightarrow a$+3$\overrightarrow b$垂直,
則$(x\overrightarrow a-\overrightarrow b)•(\overrightarrow a+3\overrightarrow b)=4x-27+(3x-1)•(-3)=-24-5x=0$,
∴$x=-\frac{24}{5}$.
(3)設(shè)$\overrightarrow a$與3$\overrightarrow a+2\overrightarrow b$的夾角為θ,則$\overrightarrow a$•(3$\overrightarrow a+2\overrightarrow b$)=3${\overrightarrow a}$2+2$\overrightarrow a$•${\overrightarrow b}$=12-6=6,
則$cosθ=\frac{\overrightarrow a•(3\overrightarrow a+2\overrightarrow b)}{{|\overrightarrow{a|}•|3\overrightarrow a+2\overrightarrow b|}}=\frac{12-6}{2×6}=\frac{1}{2}$,
∴$\overrightarrow a$與3$\overrightarrow a+2\overrightarrow b$的夾角θ=60°.

點(diǎn)評(píng) 本題主要考查向量數(shù)量積的定義以及應(yīng)用,根據(jù)相應(yīng)的公式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.過⊙O外一點(diǎn)P作⊙O的兩條割線PAB,PMN,其中PMN過圓心O,過P作再作⊙O的切線PT,切點(diǎn)為T.已知PM=MO=ON=1.
(Ⅰ)求切線PT的長(zhǎng);
(Ⅱ)求$\frac{AM•BM}{AN•BN}$時(shí)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{{x}^{2}-2x+1}$+|x+a|.
(1)當(dāng)a=2時(shí),求f(x)的最小值;
(2)當(dāng)x∈[$\frac{2}{3}$,1]時(shí),f(x)≤x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果函數(shù)f(x)=$\frac{1}{1+{e}^{x}}$+a是奇函數(shù),則實(shí)數(shù)a=(  )
A.1B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從氣球A上測(cè)得正前方的河流的兩岸B,C的俯角分別為α,β,如果這時(shí)氣球的高是100米,則河流的寬度BC為(  )
A.$\frac{100(tanβ-tanα)}{tanαtanβ}$B.$\frac{100tanαtanβ}{tanα-tanβ}$
C.$\frac{100(tanα+tanβ)}{tanαtanβ}$D.$\frac{100tanαtanβ}{tanα+tanβ}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物),為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某時(shí)間段車流量與PM2.5濃度的數(shù)據(jù)如表:
時(shí)間周一周二周三周四周五
車流量x(萬輛)100102108114116
濃度y(微克)7880848890
根據(jù)上表數(shù)據(jù),用最小二乘法求出y與x的線性回歸方程是( 。
參考公式:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b•$\overline{x}$;參考數(shù)據(jù):$\overline{x}$=108,$\overline{y}$=84.
A.$\hat y$=0.62x+7.24B.$\hat y$=0.72x+6.24C.$\hat y$=0.71x+6.14D.$\hat y$=0.62x+6.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(3,x),$\overrightarrow$=(-2,2)
(1)若向量$\overrightarrow{a}$⊥$\overrightarrow$,求實(shí)數(shù)x的值;
(2)若向量$\overrightarrow$-$\overrightarrow{a}$與3$\overrightarrow{a}$+2$\overrightarrow$共線,求實(shí)數(shù)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:?x0∈R,使sinx0=$\frac{{\sqrt{5}}}{2}$;命題q:?x∈(0,+∞),x>sinx,則下列判斷正確的是(  )
A.p為真B.¬q為假C.p∧q為真D.p∨q為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=-x4+ax3+$\frac{1}{2}$bx2的單調(diào)遞減區(qū)間為(0,$\frac{1}{2}$),(1,+∞).
(1)求實(shí)數(shù)a,b的值;
(2)試求當(dāng)x∈[0,2]時(shí),函數(shù)f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案