10.若a=20.5,b=logπ3,c=log2sin$\frac{2π}{5}$,則a、b、c從小到大的順序是c<b<a.

分析 利用對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性直接比較.

解答 解:∵a=20.5=$\sqrt{2}$≈1.414,
0=logπ1<b=logπ3<logππ=1,
c=log2sin$\frac{2π}{5}$<log2sin$\frac{π}{2}$=log21=0,
∴c<b<a.
故答案為:c<b<a.

點評 本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an},公差d>0,前n項和為Sn,且a3+a4=20,a2•a5=91,數(shù)列{bn}的前n項和Tn=1-$\frac{1}{2}$bn
(1)求數(shù)列{an}的通項公式和前n項和Sn;
(2)求數(shù)列{bn}的通項公式;
(3)若cn=$\frac{{3}^{n}_{n}}{{a}_{n}•{a}_{n+1}}$,求證:數(shù)列{cn}的前n項和Hn<$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.甲、乙兩人進(jìn)行乒乓球比賽,采用“五局三勝制”,即五局中先勝三局為贏,若每場比賽甲獲勝的概率是$\frac{2}{3}$,乙獲勝的概率是$\frac{1}{3}$,則比賽以甲三勝一負(fù)而結(jié)束的概率為$\frac{8}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從區(qū)間[0,1]上隨機(jī)取一個實數(shù)a,則關(guān)于x的一元二次方程x2-x+a=0無實根的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在半徑為10的圓O中,∠AOB=90°,C為OB的中點,AC的延長線交圓O于點D,則線段CD的長為( 。
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.5$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.從邊長為4的正方形ABCD內(nèi)部任取一點P,則P到對角線AC的距離不大于$\sqrt{2}$的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)AO的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”.給出下列命題:
①對于任意一個圓O,其“優(yōu)美函數(shù)”有無數(shù)個;
②函數(shù)f(x)=ln(x+$\sqrt{{x}^{2}+1}$)可以是某個圓的“優(yōu)美函數(shù)”;
③余弦函數(shù)y=f(x)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對稱圖形.
其中正確的命題是①②④(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示是一樣本的頻率分布直方圖,若樣本容量為100,則樣本數(shù)據(jù)在區(qū)間[15,20)內(nèi)的頻數(shù)是( 。
A.50B.40C.30D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個口袋中有5個紅球,7個白球,每次取一個,再放回取3次,觀察球的顏色,屬于(  )
A.重復(fù)試驗B.古典概型
C.3次獨立重復(fù)試驗概率模型D.以上都不對

查看答案和解析>>

同步練習(xí)冊答案