1.函數(shù)的圖象$y={log_2}\frac{2-x}{2+x}$的圖象( 。
A.關(guān)于原點對稱B.關(guān)于直線 y=-x 對稱
C.關(guān)于y軸對稱D.關(guān)于直線y=x 對稱

分析 判斷函數(shù)奇偶性,根據(jù)奇偶性得出結(jié)論.

解答 解:由函數(shù)有意義得$\frac{2-x}{2+x}$>0,解得-2<x<2,
設(shè)f(x)=log2$\frac{2-x}{2+x}$,則f(-x)=log2$\frac{2+x}{2-x}$=-log$\frac{2-x}{2+x}$=-f(x),
∴y=log2$\frac{2-x}{2+x}$是奇函數(shù),
∴y=log2$\frac{2-x}{2+x}$的圖象關(guān)于原點對稱.
故選A.

點評 本題考查了函數(shù)奇偶性的判斷與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知三角形ABC中,角A,B,C的對邊分別為a,b,c,若$sin2A=\sqrt{3}cos2A$,且角A為銳角.
(1)求三角形內(nèi)角A的大。
(2)若a=5,b=8,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.有兩個不透明的箱子,每個箱子都裝有4個完全相同的小球,球上分別標(biāo)有數(shù)字1、2、3、4,甲從其中一個箱子中摸出一個球,乙從另一個箱子摸出一個球,誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),則甲獲勝的概率為( 。
A.$\frac{4}{9}$B.$\frac{3}{4}$C.$\frac{5}{8}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy 中,F(xiàn),A,B 分別為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的右焦點、右頂點和上頂點,若$OF=FA,{S_{△FAB}}=\frac{{\sqrt{3}}}{2}$
(1)求a的值;
(2)過點P(0,2)作直線l 交橢圓于M,N 兩點,過M 作平行于x 軸的直線交橢圓于另外一點Q,連接NQ
,求證:直線NQ 經(jīng)過一個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+ax2(a∈R),y=f(x)的圖象連續(xù)不間斷.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時,設(shè)l是曲線y=f(x)的一條切線,切點是A,且l在點A處穿過函數(shù)y=f(x)的圖象(即動點在點A附近沿曲線y=f(x)運(yùn)動,經(jīng)過點A時,從l的一側(cè)進(jìn)入另一側(cè)),求切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定積分${∫}_{1}^{e}$$\frac{1}{x}$dx的值等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z為純虛數(shù)且(1+i)z=a-i(其中i是虛數(shù)單位,a∈R),則|a+z|=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)集合$A=\left\{{-1\;,0\;,\frac{1}{2}\;,3}\right\}$,B={x|x≥1},則A∩B={3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接收雨水.如果某個天池盆的盆口直徑為盆底直徑的兩倍,盆深為h(單位:寸),則該天池盆可測量出平面降雨量的最大值為(單位:寸)
提示:上、下底面圓的半徑分別為R、r,高為h的圓臺的體積的計算公式為V=$\frac{1}{3}$πh(R2+r2+Rr)(  )
A.$\frac{7}{12}$hB.$\frac{3}{4}$hC.$\frac{1}{2}$hD.h

查看答案和解析>>

同步練習(xí)冊答案