分析 根據(jù)集合的相等結(jié)合韋達(dá)定理求出a,b的值,從而求出a+b即可;根據(jù)C⊆A,得到c+1=0或2c+1=0或c=0,解出即可.
解答 解:集合A={1,2},B={x|x2+ax+b=0},
若A=B,則1,2是方程x2+ax+b=0的根,
∴$\left\{\begin{array}{l}{1+2=-a}\\{1×2=b}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=-3}\\{b=2}\end{array}\right.$,
∴a+b=-1;
若C⊆A,則C={1}或C={2}或C=∅,
∴c+1=0或2c+1=0或c=0,
解得:c=-1或c=$\frac{1}{2}$或c=0,
故常數(shù)c組成的集合為:{-1,$\frac{1}{2}$,0},
故答案為:-1,{-1,$\frac{1}{2}$,0}.
點評 本題考查了集合的相等,集合的包含關(guān)系,考查韋達(dá)定理,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-\frac{3}{2},0]$ | B. | $[-\frac{3}{2},+∞)$ | C. | (-∞,0] | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com