若ξ服從正態(tài)分布N(10,σ2),若P(ξ<11)=0.9,則P(|ξ-10|<1)=
 
考點:正態(tài)分布曲線的特點及曲線所表示的意義
專題:計算題,概率與統(tǒng)計
分析:根據(jù)隨機(jī)變量ξ服從正態(tài)分布,可知正態(tài)曲線的對稱軸,利用對稱性,即可求得P(|ξ-10|<1).
解答: 解:∵隨機(jī)變量ξ服從正態(tài)分布N(10,σ2),
∴正態(tài)曲線的對稱軸是x=10,
∵P(ξ<11)=0.9,
∴P(ξ≥11)=1-0.9=0.1,
∴P(|ξ-10|<1)=2(0.5-0.1)=0.8.
故答案為:0.8.
點評:本題主要考查正態(tài)分布曲線的特點及曲線所表示的意義、函數(shù)圖象對稱性的應(yīng)用等基礎(chǔ)知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)與
b
=(1,y)共線,設(shè)函數(shù)y=f(x).
(1)求函數(shù)f(x)最大值,并求出對應(yīng)的x的集合;
(2)已知銳角△ABC 中的三個內(nèi)角分別為 A、B、C,若有f(A-
π
3
)=
3
,邊 BC=
7
,sinB=
21
7
,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.
(Ⅰ)求{an}的通項公式;   
(Ⅱ)令bn=an+2n,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:三條拋物線y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b(a,b,c是不為0,且互不相等的不實數(shù)),證明此三條拋物線至少有一條與x軸有兩個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+x+1(x∈R),探究f(x)在(-∞,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確命題的個數(shù)是
 

①若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α;
②若直線l與平面α平行,則l與平面α內(nèi)的任意一條直線都平行;
③如果兩條平行直線中的一條直線與一個平面平行,那么另一條直線也與這個平面平行;
④若直線l與平面α平行,則l與平面α內(nèi)的任意一條直線都沒有公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosβ=-
2
3
,cosα+sinβ=
1
3
,則sin(α-β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試通過圓與球的類比,由“半徑為R的圓的內(nèi)接矩形中,以正方形的面積為最大,最大值為2R2”猜測關(guān)于球的相應(yīng)命題是“半徑為R的球內(nèi)接長方體中,以正方體的體積為最大,最大值為
 
”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=2x圖象上存在點(x,y)滿足約束條件
x+y-3≤0
x-2y-3≤0
x≥m
,則實數(shù)m的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案