12.計算
(1)$\frac{a•\root{3}{b\sqrt{a}}}{^{\frac{1}{2}}}$              
(2)($\frac{9}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2

分析 (1)(2)利用指數(shù)冪的運算法則即可得出.

解答 解:(1)原式=${a}^{1+\frac{1}{6}}$$^{\frac{1}{3}-\frac{1}{2}}$=${a}^{\frac{7}{6}}$$^{-\frac{1}{6}}$.
(2)原式=$\frac{3}{2}-1-(\frac{2}{3})^{-3×(-\frac{2}{3})}$+$(\frac{2}{3})^{-1×(-2)}$
=$\frac{1}{2}$-$\frac{4}{9}$+$\frac{4}{9}$
=$\frac{1}{2}$.

點評 本題考查了指數(shù)冪的運算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在等腰△ABC中,AB=AC,|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=2$\sqrt{6}$,則△ABC面積的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)數(shù)列{an}滿足an+1=2an,a1=1,數(shù)列{an}的前n項和為Sn,則S2015=(  )
A.22015-1B.22016-2C.22014-1D.1-22015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.化簡式子$\frac{2sin20°-cos10°}{cos80°}$的值是( 。
A.-$\sqrt{3}$B.$\sqrt{3}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,將正方形剪去兩個底角為15°的等腰三角形CDE和CBF,然后沿圖中所畫的線折成一個正三棱錐,這個正三棱錐側(cè)面與底面所成的二面角的余弦值為$\frac{2\sqrt{3}}{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C所對的邊長分別為a,b,c.已知sinA+sinC=psinB(p∈R),且b2=3ac.
(Ⅰ)當(dāng)$p=\frac{4}{3},b=1$時,求a,c的值;
(Ⅱ)若角B為鈍角,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.小明同學(xué)制作了一個簡易的網(wǎng)球發(fā)射器,可用于幫忙練習(xí)定點接發(fā)球,如圖1所示,網(wǎng)球場前半?yún)^(qū)、后半?yún)^(qū)總長為23.77米,球網(wǎng)的中間部分高度為0.914米,發(fā)射器固定安裝在后半?yún)^(qū)離球網(wǎng)底部8米處中軸線上,發(fā)射方向與球網(wǎng)底部所在直線垂直.
為計算方便,球場長度和球網(wǎng)中間高度分別按24米和1米計算,發(fā)射器和網(wǎng)球大小均忽略不計.如圖2所示,以發(fā)射器所在位置為坐標(biāo)原點建立平面直角坐標(biāo)系xOy,x軸在地平面上的球場中軸線上,y軸垂直于地平面,單位長度為1米.已知若不考慮球網(wǎng)的影響,網(wǎng)球發(fā)射后的軌跡在方程$y=\frac{1}{2}kx-\frac{1}{80}(1+{k^2}){x^2}(k>0)$表示的曲線上,其中k與發(fā)射方向有關(guān).發(fā)射器的射程是指網(wǎng)球落地點的橫坐標(biāo).
(Ⅰ)求發(fā)射器的最大射程;
(Ⅱ)請計算k在什么范圍內(nèi),發(fā)射器能將球發(fā)過網(wǎng)(即網(wǎng)球飛行到球網(wǎng)正上空時,網(wǎng)球離地距離大于1米)?若發(fā)射器將網(wǎng)球發(fā)過球網(wǎng)后,在網(wǎng)球著地前,小明要想在前半?yún)^(qū)中軸線的正上空選擇一個離地面2.55米處的擊球點正好擊中網(wǎng)球,試問擊球點的橫坐標(biāo)a最大為多少?并請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.集合{x∈N|2≤x≤7}中元素的個數(shù)為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若曲線f(x)=3x+ax3在點(1,a+3)處的切線與直線y=6x平行,則a=1.

查看答案和解析>>

同步練習(xí)冊答案