分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用等差數(shù)列與等比數(shù)列的求和公式即可得出.
解答 解:(1)由題意可得:$\left\{{\begin{array}{l}{{a_1}+{a_2}+{a_3}=7}\\{{a_1}+3+{a_3}+4=6{a_2}}\end{array}}\right.$,∴14-a2=6a2,解得a2=2,
∴$\frac{2}{q}+2+2q$=14,又q>1,解得q=2,a1=1,
∴${a_n}={2^{n-1}}({n∈{N^*}})$.
(2)${log_2}{a_n}={log_2}{2^{n-1}}=n-1$,
∴an+log2an=2n-1+n-1.
${T_n}=\frac{{1-{2^n}}}{1-2}+\frac{{n({0+n-1})}}{2}={2^n}-1+\frac{{{n^2}-n}}{2}$,
∴${T_{10}}={2^{10}}-1+\frac{{{{10}^2}-10}}{2}=1024-1+45=1068$.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其求和公式、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{27}{32}$ | B. | $\frac{3}{4}$ | C. | -$\frac{17}{32}$ | D. | $\frac{17}{32}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com